基于运动学激光雷达的多传感器系统姿态的经验不确定性评估

IF 1.2 Q4 REMOTE SENSING
Dominik Ernst, S. Vogel, I. Neumann, H. Alkhatib
{"title":"基于运动学激光雷达的多传感器系统姿态的经验不确定性评估","authors":"Dominik Ernst, S. Vogel, I. Neumann, H. Alkhatib","doi":"10.1515/jag-2023-0098","DOIUrl":null,"url":null,"abstract":"\n Kinematic multi-sensor systems (MSS) describe their movements through six-degree-of-freedom trajectories, which are often evaluated primarily for accuracy. However, understanding their self-reported uncertainty is crucial, especially when operating in diverse environments like urban, industrial, or natural settings. This is important, so the following algorithms can provide correct and safe decisions, i.e. for autonomous driving. In the context of localization, light detection and ranging sensors (LiDARs) are widely applied for tasks such as generating, updating, and integrating information from maps supporting other sensors to estimate trajectories. However, popular low-cost LiDARs deviate from other geodetic sensors in their uncertainty modeling. This paper therefore demonstrates the uncertainty evaluation of a LiDAR-based MSS localizing itself using an inertial measurement unit (IMU) and matching LiDAR observations to a known map. The necessary steps for accomplishing the sensor data fusion in a novel Error State Kalman filter (ESKF) will be presented considering the influences of the sensor uncertainties and their combination. The results provide new insights into the impact of random and systematic deviations resulting from parameters and their uncertainties established in prior calibrations. The evaluation is done using the Mahalanobis distance to consider the deviations of the trajectory from the ground truth weighted by the self-reported uncertainty, and to evaluate the consistency in hypothesis testing. The evaluation is performed using a real data set obtained from an MSS consisting of a tactical grade IMU and a Velodyne Puck in combination with reference data by a Laser Tracker in a laboratory environment. The data set consists of measurements for calibrations and multiple kinematic experiments. In the first step, the data set is simulated based on the Laser Tracker measurements to provide a baseline for the results under assumed perfect corrections. In comparison, the results using a more realistic simulated data set and the real IMU and LiDAR measurements provide deviations about a factor of five higher leading to an inconsistent estimation. The results offer insights into the open challenges related to the assumptions for integrating low-cost LiDARs in MSSs.","PeriodicalId":45494,"journal":{"name":"Journal of Applied Geodesy","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical uncertainty evaluation for the pose of a kinematic LiDAR-based multi-sensor system\",\"authors\":\"Dominik Ernst, S. Vogel, I. Neumann, H. Alkhatib\",\"doi\":\"10.1515/jag-2023-0098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Kinematic multi-sensor systems (MSS) describe their movements through six-degree-of-freedom trajectories, which are often evaluated primarily for accuracy. However, understanding their self-reported uncertainty is crucial, especially when operating in diverse environments like urban, industrial, or natural settings. This is important, so the following algorithms can provide correct and safe decisions, i.e. for autonomous driving. In the context of localization, light detection and ranging sensors (LiDARs) are widely applied for tasks such as generating, updating, and integrating information from maps supporting other sensors to estimate trajectories. However, popular low-cost LiDARs deviate from other geodetic sensors in their uncertainty modeling. This paper therefore demonstrates the uncertainty evaluation of a LiDAR-based MSS localizing itself using an inertial measurement unit (IMU) and matching LiDAR observations to a known map. The necessary steps for accomplishing the sensor data fusion in a novel Error State Kalman filter (ESKF) will be presented considering the influences of the sensor uncertainties and their combination. The results provide new insights into the impact of random and systematic deviations resulting from parameters and their uncertainties established in prior calibrations. The evaluation is done using the Mahalanobis distance to consider the deviations of the trajectory from the ground truth weighted by the self-reported uncertainty, and to evaluate the consistency in hypothesis testing. The evaluation is performed using a real data set obtained from an MSS consisting of a tactical grade IMU and a Velodyne Puck in combination with reference data by a Laser Tracker in a laboratory environment. The data set consists of measurements for calibrations and multiple kinematic experiments. In the first step, the data set is simulated based on the Laser Tracker measurements to provide a baseline for the results under assumed perfect corrections. In comparison, the results using a more realistic simulated data set and the real IMU and LiDAR measurements provide deviations about a factor of five higher leading to an inconsistent estimation. The results offer insights into the open challenges related to the assumptions for integrating low-cost LiDARs in MSSs.\",\"PeriodicalId\":45494,\"journal\":{\"name\":\"Journal of Applied Geodesy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Geodesy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jag-2023-0098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Geodesy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jag-2023-0098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

运动学多传感器系统(MSS)通过六自由度轨迹描述其运动,通常主要评估其准确性。然而,了解它们自我报告的不确定性至关重要,尤其是在城市、工业或自然环境等不同环境中运行时。这一点非常重要,因为只有这样,以下算法才能提供正确、安全的决策,即用于自动驾驶。在定位方面,光探测与测距传感器(LiDAR)被广泛应用于生成、更新和整合来自地图的信息,以支持其他传感器估计轨迹等任务。然而,流行的低成本激光雷达在不确定性建模方面与其他大地测量传感器存在差异。因此,本文展示了基于激光雷达的 MSS 使用惯性测量单元(IMU)进行自我定位并将激光雷达观测数据与已知地图进行匹配的不确定性评估。考虑到传感器不确定性及其组合的影响,本文将介绍在新型误差状态卡尔曼滤波器(ESKF)中完成传感器数据融合的必要步骤。研究结果为了解先前标定的参数及其不确定性所产生的随机和系统偏差的影响提供了新的视角。评估使用 Mahalanobis 距离来考虑轨迹与地面实况的偏差,并根据自我报告的不确定性进行加权,同时评估假设检验的一致性。评估使用了从 MSS 获得的真实数据集,该数据集由战术级 IMU 和 Velodyne Puck 组成,并结合了实验室环境中激光跟踪器的参考数据。数据集包括校准测量和多个运动学实验。第一步,根据激光跟踪仪的测量结果模拟数据集,为假定完美校正下的结果提供基线。相比之下,使用更真实的模拟数据集和真实的 IMU 与激光雷达测量结果得出的结果偏差高出约五倍,导致估算结果不一致。这些结果有助于深入了解在 MSS 中集成低成本激光雷达所面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Empirical uncertainty evaluation for the pose of a kinematic LiDAR-based multi-sensor system
Kinematic multi-sensor systems (MSS) describe their movements through six-degree-of-freedom trajectories, which are often evaluated primarily for accuracy. However, understanding their self-reported uncertainty is crucial, especially when operating in diverse environments like urban, industrial, or natural settings. This is important, so the following algorithms can provide correct and safe decisions, i.e. for autonomous driving. In the context of localization, light detection and ranging sensors (LiDARs) are widely applied for tasks such as generating, updating, and integrating information from maps supporting other sensors to estimate trajectories. However, popular low-cost LiDARs deviate from other geodetic sensors in their uncertainty modeling. This paper therefore demonstrates the uncertainty evaluation of a LiDAR-based MSS localizing itself using an inertial measurement unit (IMU) and matching LiDAR observations to a known map. The necessary steps for accomplishing the sensor data fusion in a novel Error State Kalman filter (ESKF) will be presented considering the influences of the sensor uncertainties and their combination. The results provide new insights into the impact of random and systematic deviations resulting from parameters and their uncertainties established in prior calibrations. The evaluation is done using the Mahalanobis distance to consider the deviations of the trajectory from the ground truth weighted by the self-reported uncertainty, and to evaluate the consistency in hypothesis testing. The evaluation is performed using a real data set obtained from an MSS consisting of a tactical grade IMU and a Velodyne Puck in combination with reference data by a Laser Tracker in a laboratory environment. The data set consists of measurements for calibrations and multiple kinematic experiments. In the first step, the data set is simulated based on the Laser Tracker measurements to provide a baseline for the results under assumed perfect corrections. In comparison, the results using a more realistic simulated data set and the real IMU and LiDAR measurements provide deviations about a factor of five higher leading to an inconsistent estimation. The results offer insights into the open challenges related to the assumptions for integrating low-cost LiDARs in MSSs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Geodesy
Journal of Applied Geodesy REMOTE SENSING-
CiteScore
2.30
自引率
7.10%
发文量
30
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信