{"title":"涅克拉索夫矩阵和广义涅克拉索夫矩阵线性互补问题的误差界限","authors":"Shiyun Wang, Dan Liu, Wanfu Tian, Zhen-Hua Lyu","doi":"10.1007/s10440-024-00659-w","DOIUrl":null,"url":null,"abstract":"<div><p>We first propose a new error bound for the linear complementarity problems when the involved matrices are generalized Nekrasov matrices, which generalizes the recent result obtained by Li et al. (Numer. Algorithms 74:997–1009, 2017). Then we present two new error bounds for the linear complementarity problems when the involved matrices are Nekrasov matrices. Numerical examples are given to illustrate the effectiveness of the proposed results.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"191 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error Bounds for Linear Complementarity Problems of Nekrasov and Generalized Nekrasov Matrices\",\"authors\":\"Shiyun Wang, Dan Liu, Wanfu Tian, Zhen-Hua Lyu\",\"doi\":\"10.1007/s10440-024-00659-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We first propose a new error bound for the linear complementarity problems when the involved matrices are generalized Nekrasov matrices, which generalizes the recent result obtained by Li et al. (Numer. Algorithms 74:997–1009, 2017). Then we present two new error bounds for the linear complementarity problems when the involved matrices are Nekrasov matrices. Numerical examples are given to illustrate the effectiveness of the proposed results.</p></div>\",\"PeriodicalId\":53132,\"journal\":{\"name\":\"Acta Applicandae Mathematicae\",\"volume\":\"191 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Applicandae Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10440-024-00659-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00659-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
我们首先为涉及矩阵为广义内克拉索夫矩阵时的线性互补问题提出了一个新的误差约束,它概括了 Li 等人最近获得的结果(Numer. Algorithms 74:997-1009, 2017)。然后,我们针对涉及矩阵为 Nekrasov 矩阵时的线性互补问题提出了两个新的误差边界。我们给出了数值示例来说明所提结果的有效性。
Error Bounds for Linear Complementarity Problems of Nekrasov and Generalized Nekrasov Matrices
We first propose a new error bound for the linear complementarity problems when the involved matrices are generalized Nekrasov matrices, which generalizes the recent result obtained by Li et al. (Numer. Algorithms 74:997–1009, 2017). Then we present two new error bounds for the linear complementarity problems when the involved matrices are Nekrasov matrices. Numerical examples are given to illustrate the effectiveness of the proposed results.
期刊介绍:
Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods.
Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.