{"title":"旋翼机涡环现象的数值研究","authors":"Vytautas Rimša, Mykolas Liugas","doi":"10.3390/aerospace11060418","DOIUrl":null,"url":null,"abstract":"Due to their complex aerodynamics, helicopters may enter different dangerous aerodynamic conditions under certain adverse circumstances. In this paper, we examine one such phenomenon—the Vortex Ring State (VRS). We present a simulation of the formation and evolution of a vortex ring around a helicopter’s main rotor. The calculations were carried out by solving Navier–Stokes equations using the Ansys CFX code. The simulations modeled a real helicopter using the rotor wing concept, assuming that only the main rotor blade’s geometry was modeled. A sensitivity study assessed the impact of the calculation domain and mesh size on main rotor thrust and required moment parameters. Simulations were conducted to determine the VRS region by observing the transition of the helicopter from a level flight, with the main rotor blades held at a fixed pitch position, to a gradual increase in vertical descent. The VRS region was compared with experimental results obtained from other authors, revealing sufficient coincidences. The main characteristics of the identified region were then described.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Investigation of the Vortex Ring Phenomena in Rotorcraft\",\"authors\":\"Vytautas Rimša, Mykolas Liugas\",\"doi\":\"10.3390/aerospace11060418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to their complex aerodynamics, helicopters may enter different dangerous aerodynamic conditions under certain adverse circumstances. In this paper, we examine one such phenomenon—the Vortex Ring State (VRS). We present a simulation of the formation and evolution of a vortex ring around a helicopter’s main rotor. The calculations were carried out by solving Navier–Stokes equations using the Ansys CFX code. The simulations modeled a real helicopter using the rotor wing concept, assuming that only the main rotor blade’s geometry was modeled. A sensitivity study assessed the impact of the calculation domain and mesh size on main rotor thrust and required moment parameters. Simulations were conducted to determine the VRS region by observing the transition of the helicopter from a level flight, with the main rotor blades held at a fixed pitch position, to a gradual increase in vertical descent. The VRS region was compared with experimental results obtained from other authors, revealing sufficient coincidences. The main characteristics of the identified region were then described.\",\"PeriodicalId\":48525,\"journal\":{\"name\":\"Aerospace\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace11060418\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11060418","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Numerical Investigation of the Vortex Ring Phenomena in Rotorcraft
Due to their complex aerodynamics, helicopters may enter different dangerous aerodynamic conditions under certain adverse circumstances. In this paper, we examine one such phenomenon—the Vortex Ring State (VRS). We present a simulation of the formation and evolution of a vortex ring around a helicopter’s main rotor. The calculations were carried out by solving Navier–Stokes equations using the Ansys CFX code. The simulations modeled a real helicopter using the rotor wing concept, assuming that only the main rotor blade’s geometry was modeled. A sensitivity study assessed the impact of the calculation domain and mesh size on main rotor thrust and required moment parameters. Simulations were conducted to determine the VRS region by observing the transition of the helicopter from a level flight, with the main rotor blades held at a fixed pitch position, to a gradual increase in vertical descent. The VRS region was compared with experimental results obtained from other authors, revealing sufficient coincidences. The main characteristics of the identified region were then described.
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.