旋翼机涡环现象的数值研究

IF 2.1 3区 工程技术 Q2 ENGINEERING, AEROSPACE
Vytautas Rimša, Mykolas Liugas
{"title":"旋翼机涡环现象的数值研究","authors":"Vytautas Rimša, Mykolas Liugas","doi":"10.3390/aerospace11060418","DOIUrl":null,"url":null,"abstract":"Due to their complex aerodynamics, helicopters may enter different dangerous aerodynamic conditions under certain adverse circumstances. In this paper, we examine one such phenomenon—the Vortex Ring State (VRS). We present a simulation of the formation and evolution of a vortex ring around a helicopter’s main rotor. The calculations were carried out by solving Navier–Stokes equations using the Ansys CFX code. The simulations modeled a real helicopter using the rotor wing concept, assuming that only the main rotor blade’s geometry was modeled. A sensitivity study assessed the impact of the calculation domain and mesh size on main rotor thrust and required moment parameters. Simulations were conducted to determine the VRS region by observing the transition of the helicopter from a level flight, with the main rotor blades held at a fixed pitch position, to a gradual increase in vertical descent. The VRS region was compared with experimental results obtained from other authors, revealing sufficient coincidences. The main characteristics of the identified region were then described.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Investigation of the Vortex Ring Phenomena in Rotorcraft\",\"authors\":\"Vytautas Rimša, Mykolas Liugas\",\"doi\":\"10.3390/aerospace11060418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to their complex aerodynamics, helicopters may enter different dangerous aerodynamic conditions under certain adverse circumstances. In this paper, we examine one such phenomenon—the Vortex Ring State (VRS). We present a simulation of the formation and evolution of a vortex ring around a helicopter’s main rotor. The calculations were carried out by solving Navier–Stokes equations using the Ansys CFX code. The simulations modeled a real helicopter using the rotor wing concept, assuming that only the main rotor blade’s geometry was modeled. A sensitivity study assessed the impact of the calculation domain and mesh size on main rotor thrust and required moment parameters. Simulations were conducted to determine the VRS region by observing the transition of the helicopter from a level flight, with the main rotor blades held at a fixed pitch position, to a gradual increase in vertical descent. The VRS region was compared with experimental results obtained from other authors, revealing sufficient coincidences. The main characteristics of the identified region were then described.\",\"PeriodicalId\":48525,\"journal\":{\"name\":\"Aerospace\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace11060418\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11060418","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

由于其复杂的空气动力学特性,直升机在某些不利情况下可能会进入不同的危险空气动力学状态。本文研究了其中一种现象--涡旋环状态(VRS)。我们模拟了直升机主旋翼周围涡流环的形成和演变过程。计算是通过使用 Ansys CFX 代码求解 Navier-Stokes 方程进行的。模拟使用旋翼概念对真实直升机进行建模,假设只对主旋翼的几何形状进行建模。敏感性研究评估了计算域和网格大小对主旋翼推力和所需力矩参数的影响。通过观察直升机从平飞(主旋翼桨叶保持在固定桨距位置)到垂直下降逐渐增加的过渡过程,进行了模拟以确定 VRS 区域。将 VRS 区域与其他作者获得的实验结果进行了比较,结果显示两者完全吻合。然后描述了所确定区域的主要特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Investigation of the Vortex Ring Phenomena in Rotorcraft
Due to their complex aerodynamics, helicopters may enter different dangerous aerodynamic conditions under certain adverse circumstances. In this paper, we examine one such phenomenon—the Vortex Ring State (VRS). We present a simulation of the formation and evolution of a vortex ring around a helicopter’s main rotor. The calculations were carried out by solving Navier–Stokes equations using the Ansys CFX code. The simulations modeled a real helicopter using the rotor wing concept, assuming that only the main rotor blade’s geometry was modeled. A sensitivity study assessed the impact of the calculation domain and mesh size on main rotor thrust and required moment parameters. Simulations were conducted to determine the VRS region by observing the transition of the helicopter from a level flight, with the main rotor blades held at a fixed pitch position, to a gradual increase in vertical descent. The VRS region was compared with experimental results obtained from other authors, revealing sufficient coincidences. The main characteristics of the identified region were then described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aerospace
Aerospace ENGINEERING, AEROSPACE-
CiteScore
3.40
自引率
23.10%
发文量
661
审稿时长
6 weeks
期刊介绍: Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信