在高维度上具有 $$\varvec{\Phi }$$ Φ 参数表示的准凸映射的一些结果

IF 1.4 3区 数学 Q1 MATHEMATICS
Liangpeng Xiong, Junzhou Xiong, Ruyu Zhang
{"title":"在高维度上具有 $$\\varvec{\\Phi }$$ Φ 参数表示的准凸映射的一些结果","authors":"Liangpeng Xiong,&nbsp;Junzhou Xiong,&nbsp;Ruyu Zhang","doi":"10.1007/s13324-024-00930-1","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mathbf {E_{\\mathbb {X}}}\\)</span> be a unit ball on complex Banach space <span>\\(\\mathbb {X}\\)</span> and <span>\\(\\Phi \\)</span> be a convex function such that <span>\\(\\Phi (0)=1\\)</span> and <span>\\(\\Re \\Phi (\\xi )&gt;0\\)</span> on <span>\\(\\mathbb {D}=\\{z\\in \\mathbb {C}:|z|&lt;1\\}\\)</span>. In this paper, we continue the work related to the class <span>\\(Q_\\textbf{B}^{\\Phi }(\\mathbf {E_{\\mathbb {X}}})\\)</span> of quasi-convex mappings of type <span>\\(\\textbf{B}\\)</span> which have a <span>\\(\\Phi \\)</span>-parametric representation on <span>\\(\\mathbf {E_{\\mathbb {X}}}\\)</span>, where the mappings <span>\\(f\\in Q_\\textbf{B}^{\\Phi }(\\mathbf {E_{\\mathbb {X}}})\\)</span> are <i>k</i>-fold symmetric, <span>\\(k\\in \\mathbb {N}.\\)</span> We give the improved Fekete-Szegö inequalities for the class <span>\\(Q_\\textbf{B}^{\\Phi }(\\mathbf {E_{\\mathbb {X}}})\\)</span> and establish the sharp bounds of all terms of homogeneous polynomial expansions for some subclasses of <span>\\(Q_\\textbf{B}^{\\Phi }(\\mathbf {E_{\\mathbb {X}}})\\)</span>. Our main results are closely related to the Bieberbach conjecture in higher dimensions.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some results of quasi-convex mappings which have a \\\\(\\\\varvec{\\\\Phi }\\\\)-parametric representation in higher dimensions\",\"authors\":\"Liangpeng Xiong,&nbsp;Junzhou Xiong,&nbsp;Ruyu Zhang\",\"doi\":\"10.1007/s13324-024-00930-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\mathbf {E_{\\\\mathbb {X}}}\\\\)</span> be a unit ball on complex Banach space <span>\\\\(\\\\mathbb {X}\\\\)</span> and <span>\\\\(\\\\Phi \\\\)</span> be a convex function such that <span>\\\\(\\\\Phi (0)=1\\\\)</span> and <span>\\\\(\\\\Re \\\\Phi (\\\\xi )&gt;0\\\\)</span> on <span>\\\\(\\\\mathbb {D}=\\\\{z\\\\in \\\\mathbb {C}:|z|&lt;1\\\\}\\\\)</span>. In this paper, we continue the work related to the class <span>\\\\(Q_\\\\textbf{B}^{\\\\Phi }(\\\\mathbf {E_{\\\\mathbb {X}}})\\\\)</span> of quasi-convex mappings of type <span>\\\\(\\\\textbf{B}\\\\)</span> which have a <span>\\\\(\\\\Phi \\\\)</span>-parametric representation on <span>\\\\(\\\\mathbf {E_{\\\\mathbb {X}}}\\\\)</span>, where the mappings <span>\\\\(f\\\\in Q_\\\\textbf{B}^{\\\\Phi }(\\\\mathbf {E_{\\\\mathbb {X}}})\\\\)</span> are <i>k</i>-fold symmetric, <span>\\\\(k\\\\in \\\\mathbb {N}.\\\\)</span> We give the improved Fekete-Szegö inequalities for the class <span>\\\\(Q_\\\\textbf{B}^{\\\\Phi }(\\\\mathbf {E_{\\\\mathbb {X}}})\\\\)</span> and establish the sharp bounds of all terms of homogeneous polynomial expansions for some subclasses of <span>\\\\(Q_\\\\textbf{B}^{\\\\Phi }(\\\\mathbf {E_{\\\\mathbb {X}}})\\\\)</span>. Our main results are closely related to the Bieberbach conjecture in higher dimensions.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"14 3\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-024-00930-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00930-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \(\mathbf {E_{\mathbb {X}}\) 是复巴纳赫空间 \(\mathbb {X}}\) 上的一个单位球,并且 \(\Phi \) 是一个凸函数,使得 \(\Phi (0)=1\) and\(\Re \Phi (\xi )>0\) on \(\mathbb {D}=\{z\in \mathbb {C}:|z|<1})。在本文中,我们将继续研究与类\(Q_\textbf{B}^{Phi }(\mathbf {E_{\mathbb {X}}})\)准凸映射相关的工作,该类映射在\(\mathbf {E_{\mathbb {X}}}\)上有\(\Phi \)-参数表示、其中映射 \(f\in Q_textbf{B}^{Phi }(\mathbf {E_{\mathbb {X}})是 k 倍对称的,\(k\in \mathbb {N}.\我们给出了类\(Q_\textbf{B}^{/Phi }(\mathbf {E_{\mathbb {X}}})\)的改进费克特-塞戈(Fekete-Szegö)不等式,并为\(Q_\textbf{B}^{/Phi }(\mathbf {E_{\mathbb {X}}})\)的一些子类建立了同次多项式展开的所有项的尖锐边界。我们的主要结果与高维度的比伯巴赫猜想密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some results of quasi-convex mappings which have a \(\varvec{\Phi }\)-parametric representation in higher dimensions

Let \(\mathbf {E_{\mathbb {X}}}\) be a unit ball on complex Banach space \(\mathbb {X}\) and \(\Phi \) be a convex function such that \(\Phi (0)=1\) and \(\Re \Phi (\xi )>0\) on \(\mathbb {D}=\{z\in \mathbb {C}:|z|<1\}\). In this paper, we continue the work related to the class \(Q_\textbf{B}^{\Phi }(\mathbf {E_{\mathbb {X}}})\) of quasi-convex mappings of type \(\textbf{B}\) which have a \(\Phi \)-parametric representation on \(\mathbf {E_{\mathbb {X}}}\), where the mappings \(f\in Q_\textbf{B}^{\Phi }(\mathbf {E_{\mathbb {X}}})\) are k-fold symmetric, \(k\in \mathbb {N}.\) We give the improved Fekete-Szegö inequalities for the class \(Q_\textbf{B}^{\Phi }(\mathbf {E_{\mathbb {X}}})\) and establish the sharp bounds of all terms of homogeneous polynomial expansions for some subclasses of \(Q_\textbf{B}^{\Phi }(\mathbf {E_{\mathbb {X}}})\). Our main results are closely related to the Bieberbach conjecture in higher dimensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信