预测注射器中幂律流体的重力驱动流动:IDDSI 分类流变图

IF 2.3 3区 工程技术 Q2 MECHANICS
Rémi Lecanu, Guy Della Valle, Cassandre Leverrier, Marco Ramaioli
{"title":"预测注射器中幂律流体的重力驱动流动:IDDSI 分类流变图","authors":"Rémi Lecanu,&nbsp;Guy Della Valle,&nbsp;Cassandre Leverrier,&nbsp;Marco Ramaioli","doi":"10.1007/s00397-024-01449-9","DOIUrl":null,"url":null,"abstract":"<div><p>Food rheology is key to manage the swallowing safety of people affected by swallowing disorders (dysphagia). Simple approaches to assess the flow properties of texture-modified drinks are widely used, but relatively poorly understood. This study focuses on the International Dysphagia Diet Standardisation Initiative (IDDSI) flow test, adopted by caregivers worldwide. This test considers the gravity-driven flow in a vertical syringe. Newtonian liquids and non-Newtonian fluids obtained using a commercial starch-based thickener were considered in this study. An accurate theoretical description of the flow is proposed for Newtonian and power-law fluids considering the effect of fluid properties and of the syringe geometry. A rheological map is proposed, based on the results of several thousand simulations, to capture quantitatively the effect of rheological properties and density on the IDDSI classification, highlighting the important effect of the fluid density which is usually ignored. The sensitivity of the IDDSI results with respect to the syringe outlet diameter is discussed, as well as the different average shear rates at which different IDDSI levels are tested. The rheological map also shows quantitatively that different combinations of the fluid rheological properties and density can result in the same IDDSI classification, suggesting interesting directions for future clinical research.</p></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"63 6","pages":"459 - 469"},"PeriodicalIF":2.3000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the gravity-driven flow of power law fluids in a syringe: a rheological map for the IDDSI classification\",\"authors\":\"Rémi Lecanu,&nbsp;Guy Della Valle,&nbsp;Cassandre Leverrier,&nbsp;Marco Ramaioli\",\"doi\":\"10.1007/s00397-024-01449-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Food rheology is key to manage the swallowing safety of people affected by swallowing disorders (dysphagia). Simple approaches to assess the flow properties of texture-modified drinks are widely used, but relatively poorly understood. This study focuses on the International Dysphagia Diet Standardisation Initiative (IDDSI) flow test, adopted by caregivers worldwide. This test considers the gravity-driven flow in a vertical syringe. Newtonian liquids and non-Newtonian fluids obtained using a commercial starch-based thickener were considered in this study. An accurate theoretical description of the flow is proposed for Newtonian and power-law fluids considering the effect of fluid properties and of the syringe geometry. A rheological map is proposed, based on the results of several thousand simulations, to capture quantitatively the effect of rheological properties and density on the IDDSI classification, highlighting the important effect of the fluid density which is usually ignored. The sensitivity of the IDDSI results with respect to the syringe outlet diameter is discussed, as well as the different average shear rates at which different IDDSI levels are tested. The rheological map also shows quantitatively that different combinations of the fluid rheological properties and density can result in the same IDDSI classification, suggesting interesting directions for future clinical research.</p></div>\",\"PeriodicalId\":755,\"journal\":{\"name\":\"Rheologica Acta\",\"volume\":\"63 6\",\"pages\":\"459 - 469\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rheologica Acta\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00397-024-01449-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rheologica Acta","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00397-024-01449-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

食品流变学是控制吞咽障碍(吞咽困难)患者吞咽安全的关键。评估质地改良饮料流动特性的简单方法被广泛使用,但人们对其了解相对较少。本研究侧重于国际吞咽困难饮食标准化倡议(IDSSI)的流动性测试,该测试已被全球护理人员所采用。该测试考虑的是垂直注射器中的重力驱动流动。本研究考虑了牛顿液体和使用商用淀粉增稠剂获得的非牛顿液体。考虑到流体特性和注射器几何形状的影响,提出了牛顿流体和幂律流体流动的精确理论描述。在数千次模拟结果的基础上,提出了流变图,以定量捕捉流变特性和密度对 IDDSI 分类的影响,突出了通常被忽视的流体密度的重要影响。讨论了 IDDSI 结果对注射器出口直径的敏感性,以及测试不同 IDDSI 级别时的不同平均剪切速率。流变图还定量显示,流体流变特性和密度的不同组合可导致相同的 IDDSI 分级,这为未来的临床研究提供了有趣的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predicting the gravity-driven flow of power law fluids in a syringe: a rheological map for the IDDSI classification

Predicting the gravity-driven flow of power law fluids in a syringe: a rheological map for the IDDSI classification

Food rheology is key to manage the swallowing safety of people affected by swallowing disorders (dysphagia). Simple approaches to assess the flow properties of texture-modified drinks are widely used, but relatively poorly understood. This study focuses on the International Dysphagia Diet Standardisation Initiative (IDDSI) flow test, adopted by caregivers worldwide. This test considers the gravity-driven flow in a vertical syringe. Newtonian liquids and non-Newtonian fluids obtained using a commercial starch-based thickener were considered in this study. An accurate theoretical description of the flow is proposed for Newtonian and power-law fluids considering the effect of fluid properties and of the syringe geometry. A rheological map is proposed, based on the results of several thousand simulations, to capture quantitatively the effect of rheological properties and density on the IDDSI classification, highlighting the important effect of the fluid density which is usually ignored. The sensitivity of the IDDSI results with respect to the syringe outlet diameter is discussed, as well as the different average shear rates at which different IDDSI levels are tested. The rheological map also shows quantitatively that different combinations of the fluid rheological properties and density can result in the same IDDSI classification, suggesting interesting directions for future clinical research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rheologica Acta
Rheologica Acta 物理-力学
CiteScore
4.60
自引率
8.70%
发文量
55
审稿时长
3 months
期刊介绍: "Rheologica Acta is the official journal of The European Society of Rheology. The aim of the journal is to advance the science of rheology, by publishing high quality peer reviewed articles, invited reviews and peer reviewed short communications. The Scope of Rheologica Acta includes: - Advances in rheometrical and rheo-physical techniques, rheo-optics, microrheology - Rheology of soft matter systems, including polymer melts and solutions, colloidal dispersions, cement, ceramics, glasses, gels, emulsions, surfactant systems, liquid crystals, biomaterials and food. - Rheology of Solids, chemo-rheology - Electro and magnetorheology - Theory of rheology - Non-Newtonian fluid mechanics, complex fluids in microfluidic devices and flow instabilities - Interfacial rheology Rheologica Acta aims to publish papers which represent a substantial advance in the field, mere data reports or incremental work will not be considered. Priority will be given to papers that are methodological in nature and are beneficial to a wide range of material classes. It should also be noted that the list of topics given above is meant to be representative, not exhaustive. The editors welcome feedback on the journal and suggestions for reviews and comments."
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信