来自一个碱性岛屿湖泊(意大利潘泰莱利亚岛 Bagno dell'Acqua)的微生物分离物的碳酸盐沉淀和磷酸盐捕集作用

C. Mazzoni, Agnese Piacentini, L. Di Bella, Luca Aldega, Cristina Perinelli, A. M. Conte, M. Ingrassia, Tania Ruspandini, Andrea Bonfanti, Benedetta Caraba, F. Falese, F. Chiocci, S. Fazi
{"title":"来自一个碱性岛屿湖泊(意大利潘泰莱利亚岛 Bagno dell'Acqua)的微生物分离物的碳酸盐沉淀和磷酸盐捕集作用","authors":"C. Mazzoni, Agnese Piacentini, L. Di Bella, Luca Aldega, Cristina Perinelli, A. M. Conte, M. Ingrassia, Tania Ruspandini, Andrea Bonfanti, Benedetta Caraba, F. Falese, F. Chiocci, S. Fazi","doi":"10.3389/fmicb.2024.1391968","DOIUrl":null,"url":null,"abstract":"The Bagno dell'Acqua lake is characterized by CO2 emissions, alkaline waters (pH = 9) and Eh values which indicate strongly oxidizing conditions. A typical feature of the lake is the presence of actively growing microbialites rich in calcium carbonates and silica precipitates. Mineralogy, petrography and morphology analyses of the microbialites were coupled with the analysis of the microbial community, combining molecular and cultivation approaches. The DNA sequencing revealed distinct patterns of microbial diversity, showing pronounced differences between emerged and submerged microbialite, with the upper layer of emerged samples exhibiting the most distinctive composition, both in terms of prokaryotes and eukaryotes. In particular, the most representative phyla in the microbial community were Proteobacteria, Actinobacteriota, and Bacteroidota, while Cyanobacteria were present only with an average of 5%, with the highest concentration in the submerged intermediate layer (12%). The role of microorganisms in carbonate mineral formation was clearly demonstrated as most of the isolates were able to precipitate calcium carbonate and five of them were characterized at molecular level. Interestingly, when microbial isolates were cultivated only in filtered water, the precipitation of hazenite was observed (up to 85%), opening new prospective in P (phosphate) recovery from P depleted environments.","PeriodicalId":509565,"journal":{"name":"Frontiers in Microbiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbonate precipitation and phosphate trapping by microbialite isolates from an alkaline insular lake (Bagno dell'Acqua, Pantelleria Island, Italy)\",\"authors\":\"C. Mazzoni, Agnese Piacentini, L. Di Bella, Luca Aldega, Cristina Perinelli, A. M. Conte, M. Ingrassia, Tania Ruspandini, Andrea Bonfanti, Benedetta Caraba, F. Falese, F. Chiocci, S. Fazi\",\"doi\":\"10.3389/fmicb.2024.1391968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Bagno dell'Acqua lake is characterized by CO2 emissions, alkaline waters (pH = 9) and Eh values which indicate strongly oxidizing conditions. A typical feature of the lake is the presence of actively growing microbialites rich in calcium carbonates and silica precipitates. Mineralogy, petrography and morphology analyses of the microbialites were coupled with the analysis of the microbial community, combining molecular and cultivation approaches. The DNA sequencing revealed distinct patterns of microbial diversity, showing pronounced differences between emerged and submerged microbialite, with the upper layer of emerged samples exhibiting the most distinctive composition, both in terms of prokaryotes and eukaryotes. In particular, the most representative phyla in the microbial community were Proteobacteria, Actinobacteriota, and Bacteroidota, while Cyanobacteria were present only with an average of 5%, with the highest concentration in the submerged intermediate layer (12%). The role of microorganisms in carbonate mineral formation was clearly demonstrated as most of the isolates were able to precipitate calcium carbonate and five of them were characterized at molecular level. Interestingly, when microbial isolates were cultivated only in filtered water, the precipitation of hazenite was observed (up to 85%), opening new prospective in P (phosphate) recovery from P depleted environments.\",\"PeriodicalId\":509565,\"journal\":{\"name\":\"Frontiers in Microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fmicb.2024.1391968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fmicb.2024.1391968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Bagno dell'Acqua 湖的特点是二氧化碳排放量大,湖水呈碱性(pH = 9),Eh 值表明湖水处于强氧化状态。该湖的一个典型特征是存在生长活跃的微生物岩,富含碳酸钙和二氧化硅沉淀物。在对微生物岩进行矿物学、岩相学和形态学分析的同时,还结合分子和培养方法对微生物群落进行了分析。DNA 测序揭示了微生物多样性的独特模式,显示了浮出和沉入微生物岩之间的明显差异,浮出样本的上层在原核生物和真核生物方面的组成最为独特。其中,微生物群落中最具代表性的门类是变形菌门、放线菌门和类杆菌门,而蓝藻平均含量仅为 5%,在沉水中间层中含量最高(12%)。微生物在碳酸盐矿物形成过程中的作用得到了清楚的证明,因为大多数分离物都能沉淀碳酸钙,其中五种分离物还具有分子水平的特征。有趣的是,当微生物分离物仅在过滤水中培养时,可观察到霞石的沉淀(高达 85%),这为从缺磷环境中恢复磷(磷酸盐)开辟了新的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carbonate precipitation and phosphate trapping by microbialite isolates from an alkaline insular lake (Bagno dell'Acqua, Pantelleria Island, Italy)
The Bagno dell'Acqua lake is characterized by CO2 emissions, alkaline waters (pH = 9) and Eh values which indicate strongly oxidizing conditions. A typical feature of the lake is the presence of actively growing microbialites rich in calcium carbonates and silica precipitates. Mineralogy, petrography and morphology analyses of the microbialites were coupled with the analysis of the microbial community, combining molecular and cultivation approaches. The DNA sequencing revealed distinct patterns of microbial diversity, showing pronounced differences between emerged and submerged microbialite, with the upper layer of emerged samples exhibiting the most distinctive composition, both in terms of prokaryotes and eukaryotes. In particular, the most representative phyla in the microbial community were Proteobacteria, Actinobacteriota, and Bacteroidota, while Cyanobacteria were present only with an average of 5%, with the highest concentration in the submerged intermediate layer (12%). The role of microorganisms in carbonate mineral formation was clearly demonstrated as most of the isolates were able to precipitate calcium carbonate and five of them were characterized at molecular level. Interestingly, when microbial isolates were cultivated only in filtered water, the precipitation of hazenite was observed (up to 85%), opening new prospective in P (phosphate) recovery from P depleted environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信