{"title":"热力学不稳定性的悖论","authors":"William B. Jensen, Roger W. Kugel, A. Pinhas","doi":"10.5539/ijc.v16n2p34","DOIUrl":null,"url":null,"abstract":"The constraints on the Gibbs free energy equation required to intercompare the stabilities of chemical species are reviewed, and the concept of thermodynamically unstable but kinetically stable compounds is defined. A method for synthesizing these compounds is then discussed based on a rule first stated by the French chemist, Pierre Macquer, in 1749, and its modern application illustrated using several concrete examples. A simple graphical method for visualizing trends in thermodynamically stable versus thermodynamically unstable compounds is then introduced and illustrated with example plots. The paper concludes with a brief note on terminology.","PeriodicalId":13866,"journal":{"name":"International Journal of Chemistry","volume":"55 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Paradox of Thermodynamic Instability\",\"authors\":\"William B. Jensen, Roger W. Kugel, A. Pinhas\",\"doi\":\"10.5539/ijc.v16n2p34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The constraints on the Gibbs free energy equation required to intercompare the stabilities of chemical species are reviewed, and the concept of thermodynamically unstable but kinetically stable compounds is defined. A method for synthesizing these compounds is then discussed based on a rule first stated by the French chemist, Pierre Macquer, in 1749, and its modern application illustrated using several concrete examples. A simple graphical method for visualizing trends in thermodynamically stable versus thermodynamically unstable compounds is then introduced and illustrated with example plots. The paper concludes with a brief note on terminology.\",\"PeriodicalId\":13866,\"journal\":{\"name\":\"International Journal of Chemistry\",\"volume\":\"55 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/ijc.v16n2p34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/ijc.v16n2p34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The constraints on the Gibbs free energy equation required to intercompare the stabilities of chemical species are reviewed, and the concept of thermodynamically unstable but kinetically stable compounds is defined. A method for synthesizing these compounds is then discussed based on a rule first stated by the French chemist, Pierre Macquer, in 1749, and its modern application illustrated using several concrete examples. A simple graphical method for visualizing trends in thermodynamically stable versus thermodynamically unstable compounds is then introduced and illustrated with example plots. The paper concludes with a brief note on terminology.