{"title":"通过相场建模阐明电池电极中热力学、动力学和电化学之间复杂的相互作用","authors":"W. Andrews, Katsuyo Thornton","doi":"10.1557/s43577-024-00732-7","DOIUrl":null,"url":null,"abstract":"This article highlights applications of phase-field modeling to electrochemical systems, with a focus on battery electrodes. We first provide an overview on the physical processes involved in electrochemical systems and applications of the phase-field approach to understand the thermodynamic and kinetic mechanisms underlying these processes. We employ two examples to highlight how realistic thermodynamics and kinetics can naturally be incorporated into phase-field modeling of electrochemical processes. One is a composite battery cathode with an intercalation compound (LixFePO4) as the electrochemically active material, and the other is a displacement reaction compound (Li–Cu–TiS2). With the input parameters mostly from atomistic calculations and experimental measurements, phase-field simulations allowed us to untangle the interactions among transport, reaction, electricity, chemistry, and thermodynamics that lead to highly complex evolution of the materials within battery electrodes. The implications of these observations for battery performance and degradation are discussed.\n Graphical abstract","PeriodicalId":18828,"journal":{"name":"Mrs Bulletin","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elucidating the complex interplay between thermodynamics, kinetics, and electrochemistry in battery electrodes through phase-field modeling\",\"authors\":\"W. Andrews, Katsuyo Thornton\",\"doi\":\"10.1557/s43577-024-00732-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article highlights applications of phase-field modeling to electrochemical systems, with a focus on battery electrodes. We first provide an overview on the physical processes involved in electrochemical systems and applications of the phase-field approach to understand the thermodynamic and kinetic mechanisms underlying these processes. We employ two examples to highlight how realistic thermodynamics and kinetics can naturally be incorporated into phase-field modeling of electrochemical processes. One is a composite battery cathode with an intercalation compound (LixFePO4) as the electrochemically active material, and the other is a displacement reaction compound (Li–Cu–TiS2). With the input parameters mostly from atomistic calculations and experimental measurements, phase-field simulations allowed us to untangle the interactions among transport, reaction, electricity, chemistry, and thermodynamics that lead to highly complex evolution of the materials within battery electrodes. The implications of these observations for battery performance and degradation are discussed.\\n Graphical abstract\",\"PeriodicalId\":18828,\"journal\":{\"name\":\"Mrs Bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mrs Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43577-024-00732-7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mrs Bulletin","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43577-024-00732-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Elucidating the complex interplay between thermodynamics, kinetics, and electrochemistry in battery electrodes through phase-field modeling
This article highlights applications of phase-field modeling to electrochemical systems, with a focus on battery electrodes. We first provide an overview on the physical processes involved in electrochemical systems and applications of the phase-field approach to understand the thermodynamic and kinetic mechanisms underlying these processes. We employ two examples to highlight how realistic thermodynamics and kinetics can naturally be incorporated into phase-field modeling of electrochemical processes. One is a composite battery cathode with an intercalation compound (LixFePO4) as the electrochemically active material, and the other is a displacement reaction compound (Li–Cu–TiS2). With the input parameters mostly from atomistic calculations and experimental measurements, phase-field simulations allowed us to untangle the interactions among transport, reaction, electricity, chemistry, and thermodynamics that lead to highly complex evolution of the materials within battery electrodes. The implications of these observations for battery performance and degradation are discussed.
Graphical abstract
期刊介绍:
MRS Bulletin is one of the most widely recognized and highly respected publications in advanced materials research. Each month, the Bulletin provides a comprehensive overview of a specific materials theme, along with industry and policy developments, and MRS and materials-community news and events. Written by leading experts, the overview articles are useful references for specialists, but are also presented at a level understandable to a broad scientific audience.