M. Bensaada, S. Della Krachai, F. Metehri, KDE. Kerrouche, MA. Mebrek, M. Beldjehem, F. Arezki
{"title":"用于微型卫星应用的功率调节和分配模块的性能分析","authors":"M. Bensaada, S. Della Krachai, F. Metehri, KDE. Kerrouche, MA. Mebrek, M. Beldjehem, F. Arezki","doi":"10.1017/aer.2024.48","DOIUrl":null,"url":null,"abstract":"\n Algeria’s micro-satellite, Alsat-1b, was successfully launched into a 680 km low Earth orbit onboard a PSLV-C35 rocket from Sriharikota, South India, on September 26, 2016. The spacecraft was conceived, built and launched as part of an 18-month technology transfer programme between Algeria’s Algerian Space Agency (ASAL) and the United Kingdom’s Surrey Satellite Technology Limited (SSTL). This document details the Power Conditioning and Distribution Module’s (PCM-PDM) design and performance in orbit, critical component of a satellite electrical power system, responsible for converting, regulating and distributing power to various subsystems and payloads. The PCM-PDM developed and produced by SSTL was subjected to rigorous testing simulating harsh space conditions to assess its performance. The results of this comprehensive analysis indicate that the module can effectively withstand extreme environmental factors and function optimally in challenging settings. The analysis focused on the PCM-PDM’s ability to provide reliable and efficient power conditioning and distribution to the satellite, including its load management capabilities, overcurrent protection, protection against undervoltage and critical mode operations. The results of the performance analysis showed that the PCM-PDM met the required specifications and demonstrated reliable and efficient operation in different modes of the satellite’s mission. The study highlights the importance of careful design and rigorous testing of the PCM-PDM to ensure the reliable and efficient operation of the satellite and its payloads.","PeriodicalId":508971,"journal":{"name":"The Aeronautical Journal","volume":"4 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance analysis of power conditioning and distribution module for microsatellite applications\",\"authors\":\"M. Bensaada, S. Della Krachai, F. Metehri, KDE. Kerrouche, MA. Mebrek, M. Beldjehem, F. Arezki\",\"doi\":\"10.1017/aer.2024.48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Algeria’s micro-satellite, Alsat-1b, was successfully launched into a 680 km low Earth orbit onboard a PSLV-C35 rocket from Sriharikota, South India, on September 26, 2016. The spacecraft was conceived, built and launched as part of an 18-month technology transfer programme between Algeria’s Algerian Space Agency (ASAL) and the United Kingdom’s Surrey Satellite Technology Limited (SSTL). This document details the Power Conditioning and Distribution Module’s (PCM-PDM) design and performance in orbit, critical component of a satellite electrical power system, responsible for converting, regulating and distributing power to various subsystems and payloads. The PCM-PDM developed and produced by SSTL was subjected to rigorous testing simulating harsh space conditions to assess its performance. The results of this comprehensive analysis indicate that the module can effectively withstand extreme environmental factors and function optimally in challenging settings. The analysis focused on the PCM-PDM’s ability to provide reliable and efficient power conditioning and distribution to the satellite, including its load management capabilities, overcurrent protection, protection against undervoltage and critical mode operations. The results of the performance analysis showed that the PCM-PDM met the required specifications and demonstrated reliable and efficient operation in different modes of the satellite’s mission. The study highlights the importance of careful design and rigorous testing of the PCM-PDM to ensure the reliable and efficient operation of the satellite and its payloads.\",\"PeriodicalId\":508971,\"journal\":{\"name\":\"The Aeronautical Journal\",\"volume\":\"4 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Aeronautical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/aer.2024.48\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Aeronautical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/aer.2024.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance analysis of power conditioning and distribution module for microsatellite applications
Algeria’s micro-satellite, Alsat-1b, was successfully launched into a 680 km low Earth orbit onboard a PSLV-C35 rocket from Sriharikota, South India, on September 26, 2016. The spacecraft was conceived, built and launched as part of an 18-month technology transfer programme between Algeria’s Algerian Space Agency (ASAL) and the United Kingdom’s Surrey Satellite Technology Limited (SSTL). This document details the Power Conditioning and Distribution Module’s (PCM-PDM) design and performance in orbit, critical component of a satellite electrical power system, responsible for converting, regulating and distributing power to various subsystems and payloads. The PCM-PDM developed and produced by SSTL was subjected to rigorous testing simulating harsh space conditions to assess its performance. The results of this comprehensive analysis indicate that the module can effectively withstand extreme environmental factors and function optimally in challenging settings. The analysis focused on the PCM-PDM’s ability to provide reliable and efficient power conditioning and distribution to the satellite, including its load management capabilities, overcurrent protection, protection against undervoltage and critical mode operations. The results of the performance analysis showed that the PCM-PDM met the required specifications and demonstrated reliable and efficient operation in different modes of the satellite’s mission. The study highlights the importance of careful design and rigorous testing of the PCM-PDM to ensure the reliable and efficient operation of the satellite and its payloads.