Xinpan Yu, Wei Liu, Kang He, Tengfei Wang, G. Niu, Huibin Wu
{"title":"先铁素体对中碳贝氏体钢贝氏体转变影响的实验和模型研究","authors":"Xinpan Yu, Wei Liu, Kang He, Tengfei Wang, G. Niu, Huibin Wu","doi":"10.3390/cryst14060487","DOIUrl":null,"url":null,"abstract":"In this study, we investigate the impact of prior ferrite on the bainite transformation kinetics and microstructure of medium-carbon steel interrupted by an intercritical annealing (IAA) process. It was found that the incubation time and completion time decreased from 687 s and 6018 s to 20 s and 4680 s, with the volume fraction of ferrite increasing from 9.5% to 28.6%, while the maximum transformation rate increased from 00271 μm/s to 0.0436 μm/s. The ferrite/austenite interface is introduced, and the nucleation sites are increased to accelerate the subsequent bainite transformation due to the formation of prior ferrite. However, there is a competitive relationship between the number and activation energy of bainite nucleation. According to the experimental results and theoretical calculations, the activation energy of the bainite transformation in the medium-carbon bainite steel decreases gradually with an increase in the volume fraction of prior ferrite.","PeriodicalId":505131,"journal":{"name":"Crystals","volume":"9 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental and Modelling Research on the Effect of Prior Ferrite on Bainitic Transformation in Medium-Carbon Bainitic Steel\",\"authors\":\"Xinpan Yu, Wei Liu, Kang He, Tengfei Wang, G. Niu, Huibin Wu\",\"doi\":\"10.3390/cryst14060487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we investigate the impact of prior ferrite on the bainite transformation kinetics and microstructure of medium-carbon steel interrupted by an intercritical annealing (IAA) process. It was found that the incubation time and completion time decreased from 687 s and 6018 s to 20 s and 4680 s, with the volume fraction of ferrite increasing from 9.5% to 28.6%, while the maximum transformation rate increased from 00271 μm/s to 0.0436 μm/s. The ferrite/austenite interface is introduced, and the nucleation sites are increased to accelerate the subsequent bainite transformation due to the formation of prior ferrite. However, there is a competitive relationship between the number and activation energy of bainite nucleation. According to the experimental results and theoretical calculations, the activation energy of the bainite transformation in the medium-carbon bainite steel decreases gradually with an increase in the volume fraction of prior ferrite.\",\"PeriodicalId\":505131,\"journal\":{\"name\":\"Crystals\",\"volume\":\"9 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cryst14060487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cryst14060487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental and Modelling Research on the Effect of Prior Ferrite on Bainitic Transformation in Medium-Carbon Bainitic Steel
In this study, we investigate the impact of prior ferrite on the bainite transformation kinetics and microstructure of medium-carbon steel interrupted by an intercritical annealing (IAA) process. It was found that the incubation time and completion time decreased from 687 s and 6018 s to 20 s and 4680 s, with the volume fraction of ferrite increasing from 9.5% to 28.6%, while the maximum transformation rate increased from 00271 μm/s to 0.0436 μm/s. The ferrite/austenite interface is introduced, and the nucleation sites are increased to accelerate the subsequent bainite transformation due to the formation of prior ferrite. However, there is a competitive relationship between the number and activation energy of bainite nucleation. According to the experimental results and theoretical calculations, the activation energy of the bainite transformation in the medium-carbon bainite steel decreases gradually with an increase in the volume fraction of prior ferrite.