{"title":"平衡社交机器人中的人类相似性:对儿童词汇排列和信任评估自我披露的影响","authors":"Natalia Calvo-Barajas, Anastasia Akkuzu, Ginevra Castellano","doi":"10.1145/3659062","DOIUrl":null,"url":null,"abstract":"While there is evidence that human-like characteristics in robots could benefit child-robot interaction in many ways, open questions remain about the appropriate degree of human likeness that should be implemented in robots to avoid adverse effects on acceptance and trust. This study investigates how human likeness, appearance and behavior, influence children’s social and competency trust in a robot. We first designed two versions of the Furhat robot with visual and auditory human-like and machine-like cues validated in two online studies. Secondly, we created verbal behaviors where human likeness was manipulated as responsiveness regarding the robot’s lexical matching. Then, 52 children (7-10 years old) played a storytelling game in a between-subjects experimental design. Results show that the conditions did not affect subjective trust measures. However, objective measures showed that human likeness affects trust differently. While low human-like appearance enhanced social trust, high human-like behavior improved children’s acceptance of the robot’s task-related suggestions. This work provides empirical evidence on manipulating facial features and behavior to control human likeness in a robot with a highly human-like morphology. We discuss the implications and importance of balancing human likeness in robot design and its impacts on task performance, as it directly impacts trust-building with children.","PeriodicalId":36515,"journal":{"name":"ACM Transactions on Human-Robot Interaction","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balancing Human Likeness in Social Robots: Impact on Children’s Lexical Alignment and Self-disclosure for Trust Assessment\",\"authors\":\"Natalia Calvo-Barajas, Anastasia Akkuzu, Ginevra Castellano\",\"doi\":\"10.1145/3659062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While there is evidence that human-like characteristics in robots could benefit child-robot interaction in many ways, open questions remain about the appropriate degree of human likeness that should be implemented in robots to avoid adverse effects on acceptance and trust. This study investigates how human likeness, appearance and behavior, influence children’s social and competency trust in a robot. We first designed two versions of the Furhat robot with visual and auditory human-like and machine-like cues validated in two online studies. Secondly, we created verbal behaviors where human likeness was manipulated as responsiveness regarding the robot’s lexical matching. Then, 52 children (7-10 years old) played a storytelling game in a between-subjects experimental design. Results show that the conditions did not affect subjective trust measures. However, objective measures showed that human likeness affects trust differently. While low human-like appearance enhanced social trust, high human-like behavior improved children’s acceptance of the robot’s task-related suggestions. This work provides empirical evidence on manipulating facial features and behavior to control human likeness in a robot with a highly human-like morphology. We discuss the implications and importance of balancing human likeness in robot design and its impacts on task performance, as it directly impacts trust-building with children.\",\"PeriodicalId\":36515,\"journal\":{\"name\":\"ACM Transactions on Human-Robot Interaction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Human-Robot Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3659062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Human-Robot Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3659062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Balancing Human Likeness in Social Robots: Impact on Children’s Lexical Alignment and Self-disclosure for Trust Assessment
While there is evidence that human-like characteristics in robots could benefit child-robot interaction in many ways, open questions remain about the appropriate degree of human likeness that should be implemented in robots to avoid adverse effects on acceptance and trust. This study investigates how human likeness, appearance and behavior, influence children’s social and competency trust in a robot. We first designed two versions of the Furhat robot with visual and auditory human-like and machine-like cues validated in two online studies. Secondly, we created verbal behaviors where human likeness was manipulated as responsiveness regarding the robot’s lexical matching. Then, 52 children (7-10 years old) played a storytelling game in a between-subjects experimental design. Results show that the conditions did not affect subjective trust measures. However, objective measures showed that human likeness affects trust differently. While low human-like appearance enhanced social trust, high human-like behavior improved children’s acceptance of the robot’s task-related suggestions. This work provides empirical evidence on manipulating facial features and behavior to control human likeness in a robot with a highly human-like morphology. We discuss the implications and importance of balancing human likeness in robot design and its impacts on task performance, as it directly impacts trust-building with children.
期刊介绍:
ACM Transactions on Human-Robot Interaction (THRI) is a prestigious Gold Open Access journal that aspires to lead the field of human-robot interaction as a top-tier, peer-reviewed, interdisciplinary publication. The journal prioritizes articles that significantly contribute to the current state of the art, enhance overall knowledge, have a broad appeal, and are accessible to a diverse audience. Submissions are expected to meet a high scholarly standard, and authors are encouraged to ensure their research is well-presented, advancing the understanding of human-robot interaction, adding cutting-edge or general insights to the field, or challenging current perspectives in this research domain.
THRI warmly invites well-crafted paper submissions from a variety of disciplines, encompassing robotics, computer science, engineering, design, and the behavioral and social sciences. The scholarly articles published in THRI may cover a range of topics such as the nature of human interactions with robots and robotic technologies, methods to enhance or enable novel forms of interaction, and the societal or organizational impacts of these interactions. The editorial team is also keen on receiving proposals for special issues that focus on specific technical challenges or that apply human-robot interaction research to further areas like social computing, consumer behavior, health, and education.