关于有界同质域 n 不变几何的评论

IF 0.8 2区 数学 Q2 MATHEMATICS
L. Geatti, A. Iannuzzi
{"title":"关于有界同质域 n 不变几何的评论","authors":"L. Geatti, A. Iannuzzi","doi":"10.1017/nmj.2024.12","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>Let <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000126_inline1.png\"/>\n\t\t<jats:tex-math>\n$\\mathbf {D}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> be a bounded homogeneous domain in <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000126_inline2.png\"/>\n\t\t<jats:tex-math>\n${\\mathbb {C}}^n$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. In this note, we give a characterization of the Stein domains in <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000126_inline3.png\"/>\n\t\t<jats:tex-math>\n$\\mathbf {D}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> which are invariant under a maximal unipotent subgroup <jats:italic>N</jats:italic> of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000126_inline4.png\"/>\n\t\t<jats:tex-math>\n$Aut(\\mathbf {D})$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. We also exhibit an <jats:italic>N</jats:italic>-invariant potential of the Bergman metric of <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763024000126_inline5.png\"/>\n\t\t<jats:tex-math>\n$\\mathbf {D}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, expressed in a Lie theoretical fashion. These results extend the ones previously obtained by the authors in the symmetric case.</jats:p>","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A REMARK ON THE N-INVARIANT GEOMETRY OF BOUNDED HOMOGENEOUS DOMAINS\",\"authors\":\"L. Geatti, A. Iannuzzi\",\"doi\":\"10.1017/nmj.2024.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\t <jats:p>Let <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763024000126_inline1.png\\\"/>\\n\\t\\t<jats:tex-math>\\n$\\\\mathbf {D}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> be a bounded homogeneous domain in <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763024000126_inline2.png\\\"/>\\n\\t\\t<jats:tex-math>\\n${\\\\mathbb {C}}^n$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>. In this note, we give a characterization of the Stein domains in <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763024000126_inline3.png\\\"/>\\n\\t\\t<jats:tex-math>\\n$\\\\mathbf {D}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> which are invariant under a maximal unipotent subgroup <jats:italic>N</jats:italic> of <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763024000126_inline4.png\\\"/>\\n\\t\\t<jats:tex-math>\\n$Aut(\\\\mathbf {D})$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>. We also exhibit an <jats:italic>N</jats:italic>-invariant potential of the Bergman metric of <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763024000126_inline5.png\\\"/>\\n\\t\\t<jats:tex-math>\\n$\\\\mathbf {D}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>, expressed in a Lie theoretical fashion. These results extend the ones previously obtained by the authors in the symmetric case.</jats:p>\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2024.12\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2024.12","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 $\mathbf {D}$ 是 ${mathbb {C}}^n$ 中的有界同质域。在本注释中,我们给出了$\mathbf {D}$中在$Aut(\mathbf {D})$的最大单能子群N下不变的斯坦因域的特征。我们还展示了$\mathbf {D}$ 的伯格曼度量的N不变势,并以李理论的方式表达出来。这些结果扩展了作者之前在对称情况下获得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A REMARK ON THE N-INVARIANT GEOMETRY OF BOUNDED HOMOGENEOUS DOMAINS
Let $\mathbf {D}$ be a bounded homogeneous domain in ${\mathbb {C}}^n$ . In this note, we give a characterization of the Stein domains in $\mathbf {D}$ which are invariant under a maximal unipotent subgroup N of $Aut(\mathbf {D})$ . We also exhibit an N-invariant potential of the Bergman metric of $\mathbf {D}$ , expressed in a Lie theoretical fashion. These results extend the ones previously obtained by the authors in the symmetric case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
31
审稿时长
6 months
期刊介绍: The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信