半光滑共轭梯度法--理论分析

Franz Bethke, A. Griewank, Andrea Walther
{"title":"半光滑共轭梯度法--理论分析","authors":"Franz Bethke, A. Griewank, Andrea Walther","doi":"10.1080/10556788.2024.2331068","DOIUrl":null,"url":null,"abstract":"In large scale applications, deterministic and stochastic variants of Cauchy’s steepest descent method are widely used for the minimization of objectives that are only piecewise smooth. In this paper we analyse a deterministic descent method based on the generalization of rescaled conjugate gradients proposed by Philip Wolfe in 1975 for objectives that are convex. Without this assumption the new method exploits semismoothness to obtain pairs of directionally active generalized gradients such that it can only converge to Clarke stationary points. Numerical results illustrate the theoretical findings.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semismooth conjugate gradients method – theoretical analysis\",\"authors\":\"Franz Bethke, A. Griewank, Andrea Walther\",\"doi\":\"10.1080/10556788.2024.2331068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In large scale applications, deterministic and stochastic variants of Cauchy’s steepest descent method are widely used for the minimization of objectives that are only piecewise smooth. In this paper we analyse a deterministic descent method based on the generalization of rescaled conjugate gradients proposed by Philip Wolfe in 1975 for objectives that are convex. Without this assumption the new method exploits semismoothness to obtain pairs of directionally active generalized gradients such that it can only converge to Clarke stationary points. Numerical results illustrate the theoretical findings.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2024.2331068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2024.2331068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在大规模应用中,Cauchy 最陡梯度下降法的确定性和随机变体被广泛用于片断平滑目标的最小化。在本文中,我们分析了一种基于 Philip Wolfe 于 1975 年提出的重增量共轭梯度广义的确定性下降法,该方法适用于凸目标。在没有这一假设的情况下,新方法利用半滑性获得了一对方向上活跃的广义梯度,因此它只能收敛到克拉克静止点。数值结果说明了理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A semismooth conjugate gradients method – theoretical analysis
In large scale applications, deterministic and stochastic variants of Cauchy’s steepest descent method are widely used for the minimization of objectives that are only piecewise smooth. In this paper we analyse a deterministic descent method based on the generalization of rescaled conjugate gradients proposed by Philip Wolfe in 1975 for objectives that are convex. Without this assumption the new method exploits semismoothness to obtain pairs of directionally active generalized gradients such that it can only converge to Clarke stationary points. Numerical results illustrate the theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信