{"title":"火星上升飞行器低重力模拟方案的设计与分析","authors":"Chen Li, Huijuan Wang, Zhicheng Hu, Chen Wang, Jinbao Chen","doi":"10.3390/aerospace11060424","DOIUrl":null,"url":null,"abstract":"The sample carried back by the Mars Ascent Vehicle (MAV) is a potential flagship mission of deep space exploration in recent years. A low-gravity simulation experiment is an effective method and a necessary stage for verifying the performance of the MAV launch dynamic in Earth’s gravity. In this paper, the uniqueness of low-gravity simulation is illustrated by the classical pulley balance method for the high dynamic process of a test model of the MAV. Its movement direction is the same as the compensation force, which leads to the relaxation of the sling and the failure of the compensation force in traditional cable suspension. Here, three cable suspension schemes including an improved pulley balancing scheme based on a coordinate transformation scheme and based on a dynamic pulley group scheme are proposed. For the actual launch condition of the MAV, the motion state of the ascent under the schemes and the real Mars launch are compared, which proves the feasibility of the schemes. Among them, the improved pulley balancing scheme has the best gravity compensation effect, and the error between the average value and the required value is the smallest, only 1%.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Analysis of Low-Gravity Simulation Scheme for Mars Ascent Vehicle\",\"authors\":\"Chen Li, Huijuan Wang, Zhicheng Hu, Chen Wang, Jinbao Chen\",\"doi\":\"10.3390/aerospace11060424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sample carried back by the Mars Ascent Vehicle (MAV) is a potential flagship mission of deep space exploration in recent years. A low-gravity simulation experiment is an effective method and a necessary stage for verifying the performance of the MAV launch dynamic in Earth’s gravity. In this paper, the uniqueness of low-gravity simulation is illustrated by the classical pulley balance method for the high dynamic process of a test model of the MAV. Its movement direction is the same as the compensation force, which leads to the relaxation of the sling and the failure of the compensation force in traditional cable suspension. Here, three cable suspension schemes including an improved pulley balancing scheme based on a coordinate transformation scheme and based on a dynamic pulley group scheme are proposed. For the actual launch condition of the MAV, the motion state of the ascent under the schemes and the real Mars launch are compared, which proves the feasibility of the schemes. Among them, the improved pulley balancing scheme has the best gravity compensation effect, and the error between the average value and the required value is the smallest, only 1%.\",\"PeriodicalId\":48525,\"journal\":{\"name\":\"Aerospace\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace11060424\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11060424","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Design and Analysis of Low-Gravity Simulation Scheme for Mars Ascent Vehicle
The sample carried back by the Mars Ascent Vehicle (MAV) is a potential flagship mission of deep space exploration in recent years. A low-gravity simulation experiment is an effective method and a necessary stage for verifying the performance of the MAV launch dynamic in Earth’s gravity. In this paper, the uniqueness of low-gravity simulation is illustrated by the classical pulley balance method for the high dynamic process of a test model of the MAV. Its movement direction is the same as the compensation force, which leads to the relaxation of the sling and the failure of the compensation force in traditional cable suspension. Here, three cable suspension schemes including an improved pulley balancing scheme based on a coordinate transformation scheme and based on a dynamic pulley group scheme are proposed. For the actual launch condition of the MAV, the motion state of the ascent under the schemes and the real Mars launch are compared, which proves the feasibility of the schemes. Among them, the improved pulley balancing scheme has the best gravity compensation effect, and the error between the average value and the required value is the smallest, only 1%.
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.