{"title":"隶属于半有限 von Neumann 代数的可测算子的理想空间。二","authors":"A. M. Bikchentaev, M. F. Darwish, M. A. Muratov","doi":"10.1007/s43034-024-00361-w","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\tau \\)</span> be a faithful semifinite normal trace on a von Neumann algebra <span>\\(\\mathcal {M}\\)</span>, let <span>\\(S(\\mathcal {M}, \\tau )\\)</span> be the <span>\\({}^*\\)</span>-algebra of all <span>\\(\\tau \\)</span>-measurable operators. Let <span>\\(\\mu (t; X)\\)</span> be the generalized singular value function of the operator <span>\\(X \\in S(\\mathcal {M}, \\tau )\\)</span>. If <span>\\(\\mathcal {E}\\)</span> is a normed ideal space (NIS) on <span>\\((\\mathcal {M}, \\tau )\\)</span>, then </p><div><div><span>$$\\begin{aligned} \\Vert A\\Vert _\\mathcal {E}\\le \\Vert A+\\textrm{i} B\\Vert _\\mathcal {E} \\end{aligned}$$</span></div><div>\n (*)\n </div></div><p>for all self-adjoint operators <span>\\(A, B \\in \\mathcal {E}\\)</span>. In particular, if <span>\\(A, B \\in (L_1+L_{\\infty })(\\mathcal {M}, \\tau )\\)</span> are self-adjoint, then we have the (Hardy–Littlewood–Pólya) weak submajorization, <span>\\(A \\preceq _w A+\\textrm{i}B\\)</span>. Inequality <span>\\((*)\\)</span> cannot be extended to the Shatten–von Neumann ideals <span>\\(\\mathfrak {S}_p\\)</span>, <span>\\( 0< p <1\\)</span>. Hence, the well-known inequality <span>\\( \\mu (t; A) \\le \\mu (t; A+\\textrm{i} B)\\)</span> for all <span>\\(t>0\\)</span>, positive <span>\\(A \\in S(\\mathcal {M}, \\tau )\\)</span> and self-adjoint <span>\\( B \\in S(\\mathcal {M}, \\tau )\\)</span> cannot be extended to all self-adjoint operators <span>\\(A, B \\in S(\\mathcal {M}, \\tau )\\)</span>. Consider self-adjoint operators <span>\\(X, Y\\in S(\\mathcal {M}, \\tau )\\)</span>, let <i>K</i>(<i>X</i>) be the Cayley transform of <i>X</i>. Then, <span>\\(\\mu (t; K(X)-K(Y))\\le 2 \\mu (t; X-Y)\\)</span> for all <span>\\(t>0\\)</span>. If <span>\\(\\mathcal {E}\\)</span> is an <i>F</i>-NIS on <span>\\((\\mathcal {M}, \\tau )\\)</span> and <span>\\(X-Y\\in \\mathcal {E}\\)</span>, then <span>\\(K(X)-K(Y)\\in \\mathcal {E}\\)</span> and <span>\\(\\Vert K(X)-K(Y)\\Vert _\\mathcal {E}\\le 2 \\Vert X-Y\\Vert _\\mathcal {E}\\)</span>.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ideal spaces of measurable operators affiliated to a semifinite von Neumann algebra. II\",\"authors\":\"A. M. Bikchentaev, M. F. Darwish, M. A. Muratov\",\"doi\":\"10.1007/s43034-024-00361-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\tau \\\\)</span> be a faithful semifinite normal trace on a von Neumann algebra <span>\\\\(\\\\mathcal {M}\\\\)</span>, let <span>\\\\(S(\\\\mathcal {M}, \\\\tau )\\\\)</span> be the <span>\\\\({}^*\\\\)</span>-algebra of all <span>\\\\(\\\\tau \\\\)</span>-measurable operators. Let <span>\\\\(\\\\mu (t; X)\\\\)</span> be the generalized singular value function of the operator <span>\\\\(X \\\\in S(\\\\mathcal {M}, \\\\tau )\\\\)</span>. If <span>\\\\(\\\\mathcal {E}\\\\)</span> is a normed ideal space (NIS) on <span>\\\\((\\\\mathcal {M}, \\\\tau )\\\\)</span>, then </p><div><div><span>$$\\\\begin{aligned} \\\\Vert A\\\\Vert _\\\\mathcal {E}\\\\le \\\\Vert A+\\\\textrm{i} B\\\\Vert _\\\\mathcal {E} \\\\end{aligned}$$</span></div><div>\\n (*)\\n </div></div><p>for all self-adjoint operators <span>\\\\(A, B \\\\in \\\\mathcal {E}\\\\)</span>. In particular, if <span>\\\\(A, B \\\\in (L_1+L_{\\\\infty })(\\\\mathcal {M}, \\\\tau )\\\\)</span> are self-adjoint, then we have the (Hardy–Littlewood–Pólya) weak submajorization, <span>\\\\(A \\\\preceq _w A+\\\\textrm{i}B\\\\)</span>. Inequality <span>\\\\((*)\\\\)</span> cannot be extended to the Shatten–von Neumann ideals <span>\\\\(\\\\mathfrak {S}_p\\\\)</span>, <span>\\\\( 0< p <1\\\\)</span>. Hence, the well-known inequality <span>\\\\( \\\\mu (t; A) \\\\le \\\\mu (t; A+\\\\textrm{i} B)\\\\)</span> for all <span>\\\\(t>0\\\\)</span>, positive <span>\\\\(A \\\\in S(\\\\mathcal {M}, \\\\tau )\\\\)</span> and self-adjoint <span>\\\\( B \\\\in S(\\\\mathcal {M}, \\\\tau )\\\\)</span> cannot be extended to all self-adjoint operators <span>\\\\(A, B \\\\in S(\\\\mathcal {M}, \\\\tau )\\\\)</span>. Consider self-adjoint operators <span>\\\\(X, Y\\\\in S(\\\\mathcal {M}, \\\\tau )\\\\)</span>, let <i>K</i>(<i>X</i>) be the Cayley transform of <i>X</i>. Then, <span>\\\\(\\\\mu (t; K(X)-K(Y))\\\\le 2 \\\\mu (t; X-Y)\\\\)</span> for all <span>\\\\(t>0\\\\)</span>. If <span>\\\\(\\\\mathcal {E}\\\\)</span> is an <i>F</i>-NIS on <span>\\\\((\\\\mathcal {M}, \\\\tau )\\\\)</span> and <span>\\\\(X-Y\\\\in \\\\mathcal {E}\\\\)</span>, then <span>\\\\(K(X)-K(Y)\\\\in \\\\mathcal {E}\\\\)</span> and <span>\\\\(\\\\Vert K(X)-K(Y)\\\\Vert _\\\\mathcal {E}\\\\le 2 \\\\Vert X-Y\\\\Vert _\\\\mathcal {E}\\\\)</span>.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-024-00361-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00361-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让\(\tau\)是冯-诺依曼代数\(\mathcal {M}\)上的忠实半有限正态迹线,让\(S(\mathcal {M}, \tau )\)是所有\(\tau\)-可测算子的\({}^*\)-代数。让 \(\mu (t; X)\) 是算子 \(X \ in S(\mathcal {M}, \tau )\) 的广义奇异值函数。如果 \(\mathcal {E}\) 是 \((\mathcal {M}, \tau )\) 上的规范理想空间(NIS),那么 $$\begin{aligned}\Vert A+\textrm{i}B\Vert _\mathcal {E}\end{aligned}$$ (*) for all self-adjoint operators \(A, B \in \mathcal {E}\).尤其是,如果 (L_1+L_{\infty })(\mathcal {M}, \tau )\) 中的(A, B)都是自偶算子,那么我们就有(Hardy-Littlewood-Pólya)弱子ajorization,(A \preceq _w A+\textrm{i}B\ )。不等式 \((*)\) 不能扩展到 Shatten-von Neumann 理想 \(\mathfrak {S}_p\), \( 0< p <1\).因此,众所周知的不等式 \( \mu (t; A) \le \mu (t; A+\textrm{i} B)\) for all \(t>;0),正(A在S(\mathcal {M}, \tau)中)和自偶算子(B在S(\mathcal {M}, \tau)中)不能扩展到所有自偶算子(A, B在S(\mathcal {M}, \tau)中)。Consider self-adjoint operators \(X, Y\in S(\mathcal {M}, \tau )\), let K(X) be the Cayley transform of X. Then, \(\mu (t; K(X)-K(Y))\le 2 \mu (t; X-Y)\) for all \(t>0\).如果 \(\mathcal {E}\) 是一个 F-NIS on \((\mathcal {M}, \tau )\) and \(X-Y\in \mathcal {E}\)、then \(K(X)-K(Y)in \mathcal {E}\) and\(\Vert K(X)-K(Y)\Vert _\mathcal {E}\le 2 \Vert X-Y\Vert _\mathcal {E}\).
Ideal spaces of measurable operators affiliated to a semifinite von Neumann algebra. II
Let \(\tau \) be a faithful semifinite normal trace on a von Neumann algebra \(\mathcal {M}\), let \(S(\mathcal {M}, \tau )\) be the \({}^*\)-algebra of all \(\tau \)-measurable operators. Let \(\mu (t; X)\) be the generalized singular value function of the operator \(X \in S(\mathcal {M}, \tau )\). If \(\mathcal {E}\) is a normed ideal space (NIS) on \((\mathcal {M}, \tau )\), then
for all self-adjoint operators \(A, B \in \mathcal {E}\). In particular, if \(A, B \in (L_1+L_{\infty })(\mathcal {M}, \tau )\) are self-adjoint, then we have the (Hardy–Littlewood–Pólya) weak submajorization, \(A \preceq _w A+\textrm{i}B\). Inequality \((*)\) cannot be extended to the Shatten–von Neumann ideals \(\mathfrak {S}_p\), \( 0< p <1\). Hence, the well-known inequality \( \mu (t; A) \le \mu (t; A+\textrm{i} B)\) for all \(t>0\), positive \(A \in S(\mathcal {M}, \tau )\) and self-adjoint \( B \in S(\mathcal {M}, \tau )\) cannot be extended to all self-adjoint operators \(A, B \in S(\mathcal {M}, \tau )\). Consider self-adjoint operators \(X, Y\in S(\mathcal {M}, \tau )\), let K(X) be the Cayley transform of X. Then, \(\mu (t; K(X)-K(Y))\le 2 \mu (t; X-Y)\) for all \(t>0\). If \(\mathcal {E}\) is an F-NIS on \((\mathcal {M}, \tau )\) and \(X-Y\in \mathcal {E}\), then \(K(X)-K(Y)\in \mathcal {E}\) and \(\Vert K(X)-K(Y)\Vert _\mathcal {E}\le 2 \Vert X-Y\Vert _\mathcal {E}\).
期刊介绍:
Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group.
Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory.
Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.