马拉松选手算法:数学、机械和结构优化问题的理论与应用

IF 2.4 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Ali Mortazavi
{"title":"马拉松选手算法:数学、机械和结构优化问题的理论与应用","authors":"Ali Mortazavi","doi":"10.1515/mt-2023-0091","DOIUrl":null,"url":null,"abstract":"\n This study proposes a novel human-inspired metaheuristic search algorithm called marathon runner algorithm. This method mimics competitive behaviors observed in real marathon runners through mathematical modeling. Unlike classical elitist algorithms that prioritize position of the best agent, the marathon runner algorithm introduces a novel concept called vision point. This point considers the quality of the entire population, not just the leader. By guiding the population towards vision point, the risk of getting trapped in local optima is reduced. A two-part evaluation was conducted to thoroughly assess the search capabilities of the marathon runner algorithm. First, it is tested against a set of unconstrained benchmark mathematical functions and the algorithm’s quantitative attributes, such as complexity, accuracy, stability, diversity, sensitivity, and convergence rate are analyzed. Subsequently, the algorithm was applied to mechanical and structural optimization problems with both continuous and discrete variables. This application demonstrated the effectiveness of the algorithm in solving practical engineering challenges with constraints. The outcomes are compared with those obtained by six other well-established techniques. The obtained results indicate that the marathon runner algorithm yields promising and competitive solutions for both mathematical, mechanical, and structural problems.","PeriodicalId":18231,"journal":{"name":"Materials Testing","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Marathon runner algorithm: theory and application in mathematical, mechanical and structural optimization problems\",\"authors\":\"Ali Mortazavi\",\"doi\":\"10.1515/mt-2023-0091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study proposes a novel human-inspired metaheuristic search algorithm called marathon runner algorithm. This method mimics competitive behaviors observed in real marathon runners through mathematical modeling. Unlike classical elitist algorithms that prioritize position of the best agent, the marathon runner algorithm introduces a novel concept called vision point. This point considers the quality of the entire population, not just the leader. By guiding the population towards vision point, the risk of getting trapped in local optima is reduced. A two-part evaluation was conducted to thoroughly assess the search capabilities of the marathon runner algorithm. First, it is tested against a set of unconstrained benchmark mathematical functions and the algorithm’s quantitative attributes, such as complexity, accuracy, stability, diversity, sensitivity, and convergence rate are analyzed. Subsequently, the algorithm was applied to mechanical and structural optimization problems with both continuous and discrete variables. This application demonstrated the effectiveness of the algorithm in solving practical engineering challenges with constraints. The outcomes are compared with those obtained by six other well-established techniques. The obtained results indicate that the marathon runner algorithm yields promising and competitive solutions for both mathematical, mechanical, and structural problems.\",\"PeriodicalId\":18231,\"journal\":{\"name\":\"Materials Testing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Testing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/mt-2023-0091\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Testing","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/mt-2023-0091","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种新颖的受人类启发的元启发式搜索算法--马拉松选手算法。该方法通过数学建模模仿了在真实马拉松运动员身上观察到的竞争行为。与优先考虑最佳代理位置的经典精英算法不同,马拉松选手算法引入了一个名为 "愿景点 "的新概念。该点考虑的是整个群体的质量,而不仅仅是领跑者的质量。通过引导群体向愿景点前进,降低了陷入局部最优的风险。为了全面评估马拉松选手算法的搜索能力,我们进行了两部分评估。首先,针对一组无约束基准数学函数进行了测试,并分析了算法的定量属性,如复杂性、准确性、稳定性、多样性、灵敏度和收敛速度。随后,该算法被应用于具有连续和离散变量的机械和结构优化问题。这一应用证明了该算法在解决有约束条件的实际工程挑战中的有效性。研究结果与其他六种成熟技术的结果进行了比较。结果表明,马拉松选手算法可以为数学、机械和结构问题提供有前景、有竞争力的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Marathon runner algorithm: theory and application in mathematical, mechanical and structural optimization problems
This study proposes a novel human-inspired metaheuristic search algorithm called marathon runner algorithm. This method mimics competitive behaviors observed in real marathon runners through mathematical modeling. Unlike classical elitist algorithms that prioritize position of the best agent, the marathon runner algorithm introduces a novel concept called vision point. This point considers the quality of the entire population, not just the leader. By guiding the population towards vision point, the risk of getting trapped in local optima is reduced. A two-part evaluation was conducted to thoroughly assess the search capabilities of the marathon runner algorithm. First, it is tested against a set of unconstrained benchmark mathematical functions and the algorithm’s quantitative attributes, such as complexity, accuracy, stability, diversity, sensitivity, and convergence rate are analyzed. Subsequently, the algorithm was applied to mechanical and structural optimization problems with both continuous and discrete variables. This application demonstrated the effectiveness of the algorithm in solving practical engineering challenges with constraints. The outcomes are compared with those obtained by six other well-established techniques. The obtained results indicate that the marathon runner algorithm yields promising and competitive solutions for both mathematical, mechanical, and structural problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Testing
Materials Testing 工程技术-材料科学:表征与测试
CiteScore
4.20
自引率
36.00%
发文量
165
审稿时长
4-8 weeks
期刊介绍: Materials Testing is a SCI-listed English language journal dealing with all aspects of material and component testing with a special focus on transfer between laboratory research into industrial application. The journal provides first-hand information on non-destructive, destructive, optical, physical and chemical test procedures. It contains exclusive articles which are peer-reviewed applying respectively high international quality criterions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信