{"title":"基于引导遗传算法的多项式回归和 LSTM 集合投票(GGA-PolReg-LSTM),用于利用可持续城市的物联网和空气质量数据进行拥堵预测","authors":"Boutheina Jlifi, Mahdi Medini, Claude Duvallet","doi":"10.1007/s11227-024-06186-7","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":220078,"journal":{"name":"The Journal of Supercomputing","volume":"45 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A guided genetic algorithm-based ensemble voting of polynomial regression and LSTM (GGA-PolReg-LSTM) for congestion prediction using IoT and air quality data in sustainable cities\",\"authors\":\"Boutheina Jlifi, Mahdi Medini, Claude Duvallet\",\"doi\":\"10.1007/s11227-024-06186-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":220078,\"journal\":{\"name\":\"The Journal of Supercomputing\",\"volume\":\"45 18\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Supercomputing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11227-024-06186-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11227-024-06186-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A guided genetic algorithm-based ensemble voting of polynomial regression and LSTM (GGA-PolReg-LSTM) for congestion prediction using IoT and air quality data in sustainable cities