解读多模态大脑特征:解读青少年精神病理学的跨诊断维度

Jing Xia, Nanguang Chen, Anqi Qiu
{"title":"解读多模态大脑特征:解读青少年精神病理学的跨诊断维度","authors":"Jing Xia, Nanguang Chen, Anqi Qiu","doi":"10.1002/aisy.202300577","DOIUrl":null,"url":null,"abstract":"Adolescent psychiatric disorders arise from intricate interactions of clinical histories and disruptions in brain development. While connections between psychopathology and brain functional connectivity are studied, the use of deep learning to elucidate overlapping neural mechanisms through multimodal brain images remains nascent. Utilizing two adolescent datasets—the Philadelphia Neurodevelopmental Cohort (PNC, n = 1100) and the Adolescent Brain Cognitive Development (ABCD, n = 7536)—this study employs interpretable neural networks and demonstrates that incorporating brain morphology, along with functional and structural networks, augments traditional clinical characteristics (age, gender, race, parental education, medical history, and trauma exposure). Predictive accuracy reaches 0.37–0.464 between real and predicted general psychopathology and four psychopathology dimensions (externalizing, psychosis, anxiety, and fear). The brain morphology and connectivities within the frontoparietal, default mode network, and visual associate networks are recurrent across general psychopathology and four psychopathology dimensions. Unique structural and functional pathways originating from the cerebellum, amygdala, and visual‐sensorimotor cortex are linked with these individual dimensions. Consistent findings across both PNC and ABCD affirm the generalizability. The results underscore the potential of diverse sensory inputs in steering executive processes tied to psychopathology dimensions in adolescents, hinting at neural avenues for targeted therapeutic interventions and preventive strategies.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"47 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unraveling Multimodal Brain Signatures: Deciphering Transdiagnostic Dimensions of Psychopathology in Adolescents\",\"authors\":\"Jing Xia, Nanguang Chen, Anqi Qiu\",\"doi\":\"10.1002/aisy.202300577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adolescent psychiatric disorders arise from intricate interactions of clinical histories and disruptions in brain development. While connections between psychopathology and brain functional connectivity are studied, the use of deep learning to elucidate overlapping neural mechanisms through multimodal brain images remains nascent. Utilizing two adolescent datasets—the Philadelphia Neurodevelopmental Cohort (PNC, n = 1100) and the Adolescent Brain Cognitive Development (ABCD, n = 7536)—this study employs interpretable neural networks and demonstrates that incorporating brain morphology, along with functional and structural networks, augments traditional clinical characteristics (age, gender, race, parental education, medical history, and trauma exposure). Predictive accuracy reaches 0.37–0.464 between real and predicted general psychopathology and four psychopathology dimensions (externalizing, psychosis, anxiety, and fear). The brain morphology and connectivities within the frontoparietal, default mode network, and visual associate networks are recurrent across general psychopathology and four psychopathology dimensions. Unique structural and functional pathways originating from the cerebellum, amygdala, and visual‐sensorimotor cortex are linked with these individual dimensions. Consistent findings across both PNC and ABCD affirm the generalizability. The results underscore the potential of diverse sensory inputs in steering executive processes tied to psychopathology dimensions in adolescents, hinting at neural avenues for targeted therapeutic interventions and preventive strategies.\",\"PeriodicalId\":7187,\"journal\":{\"name\":\"Advanced Intelligent Systems\",\"volume\":\"47 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/aisy.202300577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202300577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

青少年精神障碍源于临床病史和大脑发育紊乱之间错综复杂的相互作用。虽然精神病理学与大脑功能连接之间的联系已得到研究,但利用深度学习通过多模态大脑图像阐明重叠神经机制的研究仍处于起步阶段。本研究利用两个青少年数据集--费城神经发育队列(PNC,n = 1100)和青少年大脑认知发展(ABCD,n = 7536)--采用了可解释的神经网络,并证明将大脑形态学与功能和结构网络相结合,可以增强传统的临床特征(年龄、性别、种族、父母教育程度、病史和创伤暴露)。真实与预测的一般精神病理学和四个精神病理学维度(外化、精神病、焦虑和恐惧)之间的预测准确度达到 0.37-0.464 之间。大脑形态和额顶叶、默认模式网络和视觉联想网络内的连接性在一般精神病理学和四个精神病理学维度中反复出现。源自小脑、杏仁核和视觉-感觉-运动皮层的独特结构和功能通路与这些个别维度相关联。PNC和ABCD的研究结果一致,这肯定了研究的普遍性。研究结果强调了各种感觉输入在引导与青少年心理病理学维度相关的执行过程方面的潜力,为有针对性的治疗干预和预防策略提供了神经途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling Multimodal Brain Signatures: Deciphering Transdiagnostic Dimensions of Psychopathology in Adolescents
Adolescent psychiatric disorders arise from intricate interactions of clinical histories and disruptions in brain development. While connections between psychopathology and brain functional connectivity are studied, the use of deep learning to elucidate overlapping neural mechanisms through multimodal brain images remains nascent. Utilizing two adolescent datasets—the Philadelphia Neurodevelopmental Cohort (PNC, n = 1100) and the Adolescent Brain Cognitive Development (ABCD, n = 7536)—this study employs interpretable neural networks and demonstrates that incorporating brain morphology, along with functional and structural networks, augments traditional clinical characteristics (age, gender, race, parental education, medical history, and trauma exposure). Predictive accuracy reaches 0.37–0.464 between real and predicted general psychopathology and four psychopathology dimensions (externalizing, psychosis, anxiety, and fear). The brain morphology and connectivities within the frontoparietal, default mode network, and visual associate networks are recurrent across general psychopathology and four psychopathology dimensions. Unique structural and functional pathways originating from the cerebellum, amygdala, and visual‐sensorimotor cortex are linked with these individual dimensions. Consistent findings across both PNC and ABCD affirm the generalizability. The results underscore the potential of diverse sensory inputs in steering executive processes tied to psychopathology dimensions in adolescents, hinting at neural avenues for targeted therapeutic interventions and preventive strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信