图谱划分中的得与失:在复杂网络中寻找准确的群落

Algorithms Pub Date : 2024-05-23 DOI:10.3390/a17060226
Arman Ferdowsi, Maryam Dehghan Dehghan Chenary
{"title":"图谱划分中的得与失:在复杂网络中寻找准确的群落","authors":"Arman Ferdowsi, Maryam Dehghan Dehghan Chenary","doi":"10.3390/a17060226","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to community detection in complex networks by simultaneously incorporating a connectivity-based metric and Max-Min Modularity. By leveraging the connectivity-based metric and employing a heuristic algorithm, we develop a novel complementary graph for the Max-Min Modularity that enhances its effectiveness. We formulate community detection as an integer programming problem of an equivalent yet more compact counterpart model of the revised Max-Min Modularity maximization problem. Using a row generation technique alongside the heuristic approach, we then provide a hybrid procedure for near-optimally solving the model and discovering high-quality communities. Through a series of experiments, we demonstrate the success of our algorithm, showcasing its efficiency in detecting communities, particularly in extensive networks.","PeriodicalId":502609,"journal":{"name":"Algorithms","volume":"56 25","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gain and Pain in Graph Partitioning: Finding Accurate Communities in Complex Networks\",\"authors\":\"Arman Ferdowsi, Maryam Dehghan Dehghan Chenary\",\"doi\":\"10.3390/a17060226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach to community detection in complex networks by simultaneously incorporating a connectivity-based metric and Max-Min Modularity. By leveraging the connectivity-based metric and employing a heuristic algorithm, we develop a novel complementary graph for the Max-Min Modularity that enhances its effectiveness. We formulate community detection as an integer programming problem of an equivalent yet more compact counterpart model of the revised Max-Min Modularity maximization problem. Using a row generation technique alongside the heuristic approach, we then provide a hybrid procedure for near-optimally solving the model and discovering high-quality communities. Through a series of experiments, we demonstrate the success of our algorithm, showcasing its efficiency in detecting communities, particularly in extensive networks.\",\"PeriodicalId\":502609,\"journal\":{\"name\":\"Algorithms\",\"volume\":\"56 25\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/a17060226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a17060226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种在复杂网络中同时结合基于连接性的度量和最大最小模块化的社群检测方法。通过利用基于连接性的度量和采用启发式算法,我们为 Max-Min 模块化开发了一种新的互补图,从而提高了其有效性。我们将群落检测表述为一个整数编程问题,它与修订后的最大最小模块化最大化问题的对应模型等价,但更紧凑。在使用启发式方法的同时,我们还使用了行生成技术,从而提供了一种混合程序,用于接近最优地求解模型和发现高质量的社区。通过一系列实验,我们证明了我们算法的成功,展示了它在检测社群方面的效率,尤其是在广泛的网络中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gain and Pain in Graph Partitioning: Finding Accurate Communities in Complex Networks
This paper presents an approach to community detection in complex networks by simultaneously incorporating a connectivity-based metric and Max-Min Modularity. By leveraging the connectivity-based metric and employing a heuristic algorithm, we develop a novel complementary graph for the Max-Min Modularity that enhances its effectiveness. We formulate community detection as an integer programming problem of an equivalent yet more compact counterpart model of the revised Max-Min Modularity maximization problem. Using a row generation technique alongside the heuristic approach, we then provide a hybrid procedure for near-optimally solving the model and discovering high-quality communities. Through a series of experiments, we demonstrate the success of our algorithm, showcasing its efficiency in detecting communities, particularly in extensive networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信