{"title":"图谱划分中的得与失:在复杂网络中寻找准确的群落","authors":"Arman Ferdowsi, Maryam Dehghan Dehghan Chenary","doi":"10.3390/a17060226","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to community detection in complex networks by simultaneously incorporating a connectivity-based metric and Max-Min Modularity. By leveraging the connectivity-based metric and employing a heuristic algorithm, we develop a novel complementary graph for the Max-Min Modularity that enhances its effectiveness. We formulate community detection as an integer programming problem of an equivalent yet more compact counterpart model of the revised Max-Min Modularity maximization problem. Using a row generation technique alongside the heuristic approach, we then provide a hybrid procedure for near-optimally solving the model and discovering high-quality communities. Through a series of experiments, we demonstrate the success of our algorithm, showcasing its efficiency in detecting communities, particularly in extensive networks.","PeriodicalId":502609,"journal":{"name":"Algorithms","volume":"56 25","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gain and Pain in Graph Partitioning: Finding Accurate Communities in Complex Networks\",\"authors\":\"Arman Ferdowsi, Maryam Dehghan Dehghan Chenary\",\"doi\":\"10.3390/a17060226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach to community detection in complex networks by simultaneously incorporating a connectivity-based metric and Max-Min Modularity. By leveraging the connectivity-based metric and employing a heuristic algorithm, we develop a novel complementary graph for the Max-Min Modularity that enhances its effectiveness. We formulate community detection as an integer programming problem of an equivalent yet more compact counterpart model of the revised Max-Min Modularity maximization problem. Using a row generation technique alongside the heuristic approach, we then provide a hybrid procedure for near-optimally solving the model and discovering high-quality communities. Through a series of experiments, we demonstrate the success of our algorithm, showcasing its efficiency in detecting communities, particularly in extensive networks.\",\"PeriodicalId\":502609,\"journal\":{\"name\":\"Algorithms\",\"volume\":\"56 25\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algorithms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/a17060226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a17060226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gain and Pain in Graph Partitioning: Finding Accurate Communities in Complex Networks
This paper presents an approach to community detection in complex networks by simultaneously incorporating a connectivity-based metric and Max-Min Modularity. By leveraging the connectivity-based metric and employing a heuristic algorithm, we develop a novel complementary graph for the Max-Min Modularity that enhances its effectiveness. We formulate community detection as an integer programming problem of an equivalent yet more compact counterpart model of the revised Max-Min Modularity maximization problem. Using a row generation technique alongside the heuristic approach, we then provide a hybrid procedure for near-optimally solving the model and discovering high-quality communities. Through a series of experiments, we demonstrate the success of our algorithm, showcasing its efficiency in detecting communities, particularly in extensive networks.