动作群组的二范畴

IF 0.6 4区 数学 Q3 MATHEMATICS
Carla Farsi, Laura Scull, Jordan Watts
{"title":"动作群组的二范畴","authors":"Carla Farsi,&nbsp;Laura Scull,&nbsp;Jordan Watts","doi":"10.1007/s10485-024-09770-3","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that the 2-category of action Lie groupoids localised in the following three different ways yield equivalent bicategories: localising at equivariant weak equivalences à la Pronk, localising using surjective submersive equivariant weak equivalences and anafunctors à la Roberts, and localising at all weak equivalences. These constructions generalise the known case of representable orbifold groupoids. We also show that any weak equivalence between action Lie groupoids is isomorphic to the composition of two particularly nice forms of equivariant weak equivalences.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":"32 3","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bicategories of Action Groupoids\",\"authors\":\"Carla Farsi,&nbsp;Laura Scull,&nbsp;Jordan Watts\",\"doi\":\"10.1007/s10485-024-09770-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that the 2-category of action Lie groupoids localised in the following three different ways yield equivalent bicategories: localising at equivariant weak equivalences à la Pronk, localising using surjective submersive equivariant weak equivalences and anafunctors à la Roberts, and localising at all weak equivalences. These constructions generalise the known case of representable orbifold groupoids. We also show that any weak equivalence between action Lie groupoids is isomorphic to the composition of two particularly nice forms of equivariant weak equivalences.</p></div>\",\"PeriodicalId\":7952,\"journal\":{\"name\":\"Applied Categorical Structures\",\"volume\":\"32 3\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Categorical Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10485-024-09770-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-024-09770-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,用以下三种不同方法局部化的作用列群的 2 类会产生等价的二分类:局部化于等变弱等价,如普朗克;局部化使用注入式等变弱等价和反函数,如罗伯茨;局部化于所有弱等价。这些构造概括了已知的可表示球面群的情况。我们还证明,作用Lie群集之间的任何弱等价性都与两种特别好的等变弱等价性形式的组成同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bicategories of Action Groupoids

We prove that the 2-category of action Lie groupoids localised in the following three different ways yield equivalent bicategories: localising at equivariant weak equivalences à la Pronk, localising using surjective submersive equivariant weak equivalences and anafunctors à la Roberts, and localising at all weak equivalences. These constructions generalise the known case of representable orbifold groupoids. We also show that any weak equivalence between action Lie groupoids is isomorphic to the composition of two particularly nice forms of equivariant weak equivalences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信