在一热编码和二进制编码之间进行转换的新型量子算法

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Bingren Chen, Hanqing Wu, Haomu Yuan, Lei Wu, Xin Li
{"title":"在一热编码和二进制编码之间进行转换的新型量子算法","authors":"Bingren Chen,&nbsp;Hanqing Wu,&nbsp;Haomu Yuan,&nbsp;Lei Wu,&nbsp;Xin Li","doi":"10.1007/s11128-024-04403-z","DOIUrl":null,"url":null,"abstract":"<div><p>In the domain of quantum computing, two widely employed techniques for encoding a normalized vector of length <i>N</i>, denoted as <span>\\(\\{ \\alpha _i \\}\\)</span>, are one-hot encoding and binary encoding. The one-hot encoding state is represented as <span>\\(\\vert \\psi _{OH}^{(N)} \\rangle \\)</span> and can be expressed as: <span>\\(\\vert \\psi _{OH}^{(N)} \\rangle =\\sum _{i=0}^{N-1} \\alpha _i \\vert 0 \\rangle ^{\\otimes N-i-1} \\vert 1 \\rangle \\vert 0 \\rangle ^{\\otimes i}\\)</span>. On the other hand, the binary encoding state is symbolized as <span>\\(\\vert \\psi _{BI}^{(N)} \\rangle \\)</span> and is defined as: <span>\\(\\vert \\psi _{BI}^{(N)} \\rangle =\\sum _{i=0}^{N-1} \\alpha _i \\vert b_i \\rangle \\)</span>, where <span>\\(b_i\\)</span> corresponds to the binary representation of <i>i</i>. In this paper, we introduce a method for converting between the one-hot encoding state and the binary encoding state, utilizing the Domain Wall state as an intermediary. The Domain Wall state, denoted as <span>\\(\\vert \\psi _{DW}^{(N)} \\rangle \\)</span>, is defined as: <span>\\(\\vert \\psi _{DW}^{(N)} \\rangle =\\sum _{i=0}^{N-1} \\alpha _i \\vert 0 \\rangle ^{\\otimes N-i-1} \\vert 1 \\rangle ^{\\otimes i}\\)</span>. Our proposed circuit achieves a depth of <span>\\(O(\\log ^2 N)\\)</span> and a size of <i>O</i>(<i>N</i>).Kindly check and confirm that the corresponding author mail id is correctly identified.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel quantum algorithm for converting between one-hot and binary encodings\",\"authors\":\"Bingren Chen,&nbsp;Hanqing Wu,&nbsp;Haomu Yuan,&nbsp;Lei Wu,&nbsp;Xin Li\",\"doi\":\"10.1007/s11128-024-04403-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the domain of quantum computing, two widely employed techniques for encoding a normalized vector of length <i>N</i>, denoted as <span>\\\\(\\\\{ \\\\alpha _i \\\\}\\\\)</span>, are one-hot encoding and binary encoding. The one-hot encoding state is represented as <span>\\\\(\\\\vert \\\\psi _{OH}^{(N)} \\\\rangle \\\\)</span> and can be expressed as: <span>\\\\(\\\\vert \\\\psi _{OH}^{(N)} \\\\rangle =\\\\sum _{i=0}^{N-1} \\\\alpha _i \\\\vert 0 \\\\rangle ^{\\\\otimes N-i-1} \\\\vert 1 \\\\rangle \\\\vert 0 \\\\rangle ^{\\\\otimes i}\\\\)</span>. On the other hand, the binary encoding state is symbolized as <span>\\\\(\\\\vert \\\\psi _{BI}^{(N)} \\\\rangle \\\\)</span> and is defined as: <span>\\\\(\\\\vert \\\\psi _{BI}^{(N)} \\\\rangle =\\\\sum _{i=0}^{N-1} \\\\alpha _i \\\\vert b_i \\\\rangle \\\\)</span>, where <span>\\\\(b_i\\\\)</span> corresponds to the binary representation of <i>i</i>. In this paper, we introduce a method for converting between the one-hot encoding state and the binary encoding state, utilizing the Domain Wall state as an intermediary. The Domain Wall state, denoted as <span>\\\\(\\\\vert \\\\psi _{DW}^{(N)} \\\\rangle \\\\)</span>, is defined as: <span>\\\\(\\\\vert \\\\psi _{DW}^{(N)} \\\\rangle =\\\\sum _{i=0}^{N-1} \\\\alpha _i \\\\vert 0 \\\\rangle ^{\\\\otimes N-i-1} \\\\vert 1 \\\\rangle ^{\\\\otimes i}\\\\)</span>. Our proposed circuit achieves a depth of <span>\\\\(O(\\\\log ^2 N)\\\\)</span> and a size of <i>O</i>(<i>N</i>).Kindly check and confirm that the corresponding author mail id is correctly identified.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-024-04403-z\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04403-z","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

在量子计算领域,有两种广泛使用的技术用于对长度为 N 的归一化矢量(表示为 \(\{ \alpha _i \}\))进行编码,它们是一热编码和二进制编码。一热编码状态表示为 \(\vert \psi _{OH}^{(N)} \rangle \),可以表示为:\(\vert \psi _{OH}^{(N)} \rangle =\sum _{i=0}^{N-1} \alpha _i \vert 0 \rangle ^{otimes N-i-1} \vert 1 \rangle \vert 0 \rangle ^{otimes i}/)。另一方面,二进制编码状态的符号是 \(\vert \psi _{BI}^{(N)} \rangle \),其定义为:\在本文中,我们引入了一种在一热编码状态和二进制编码状态之间转换的方法,利用域墙状态作为中介。域墙状态,表示为 \(\vert \psi _{DW}^{(N)} \rangle \),定义为:\(\vert \psi _{DW}^{(N)} \rangle =\sum _{i=0}^{N-1} \alpha _i \vert 0 \rangle ^{otimes N-i-1} \vert 1 \rangle ^{otimes i}\)。我们提出的电路实现了深度(O(\log ^2 N)\)和大小(O(N))。请检查并确认对应作者的邮件 ID 是否被正确识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A novel quantum algorithm for converting between one-hot and binary encodings

A novel quantum algorithm for converting between one-hot and binary encodings

A novel quantum algorithm for converting between one-hot and binary encodings

In the domain of quantum computing, two widely employed techniques for encoding a normalized vector of length N, denoted as \(\{ \alpha _i \}\), are one-hot encoding and binary encoding. The one-hot encoding state is represented as \(\vert \psi _{OH}^{(N)} \rangle \) and can be expressed as: \(\vert \psi _{OH}^{(N)} \rangle =\sum _{i=0}^{N-1} \alpha _i \vert 0 \rangle ^{\otimes N-i-1} \vert 1 \rangle \vert 0 \rangle ^{\otimes i}\). On the other hand, the binary encoding state is symbolized as \(\vert \psi _{BI}^{(N)} \rangle \) and is defined as: \(\vert \psi _{BI}^{(N)} \rangle =\sum _{i=0}^{N-1} \alpha _i \vert b_i \rangle \), where \(b_i\) corresponds to the binary representation of i. In this paper, we introduce a method for converting between the one-hot encoding state and the binary encoding state, utilizing the Domain Wall state as an intermediary. The Domain Wall state, denoted as \(\vert \psi _{DW}^{(N)} \rangle \), is defined as: \(\vert \psi _{DW}^{(N)} \rangle =\sum _{i=0}^{N-1} \alpha _i \vert 0 \rangle ^{\otimes N-i-1} \vert 1 \rangle ^{\otimes i}\). Our proposed circuit achieves a depth of \(O(\log ^2 N)\) and a size of O(N).Kindly check and confirm that the corresponding author mail id is correctly identified.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信