基于使用逆向工程方法测量数据的工程和医疗行业 CAD 建模精度分析

Designs Pub Date : 2024-05-24 DOI:10.3390/designs8030050
Paweł Turek, Wojciech Bezłada, Klaudia Cierpisz, Karol Dubiel, Adrian Frydrych, Jacek Misiura
{"title":"基于使用逆向工程方法测量数据的工程和医疗行业 CAD 建模精度分析","authors":"Paweł Turek, Wojciech Bezłada, Klaudia Cierpisz, Karol Dubiel, Adrian Frydrych, Jacek Misiura","doi":"10.3390/designs8030050","DOIUrl":null,"url":null,"abstract":"The reverse engineering (RE) process is often necessary in today’s engineering and medical industries. Expertise in measurement technology, data processing, and CAD modeling is required to ensure accurate reconstruction of an object’s geometry. However, errors are generated at every stage of geometric reconstruction, affecting the dimensional and geometric accuracy of the final 3D-CAD model. In this article, the geometry of reconstructed models was measured using contact and optical methods. The measurement data representing 2D profiles, 3D point clouds, and 2D images acquired in the reconstruction process were saved to a stereolithography (STL) model. The reconstructed models were then subjected to a CAD modeling process, and the accuracy of the parametric modeling was evaluated by comparing the 3D-CAD model to the 3D-STL model. Based on the results, the model used for clamping and positioning parts to perform the machining process and the connecting rod provided the most accurate mapping errors. These models represented deviations within ±0.02 mm and ±0.05 mm. The accuracy of CAD modeling for the turbine blade model and the pelvis part was comparable, presenting deviations within ±0.1 mm. However, the helical gear and the femur models showed the highest deviations of about ±0.2 mm. The procedures presented in the article specify the methods and resolution of the measurement systems and suggest CAD modeling strategies to minimize reconstruction errors. These results can be used as a starting point for further tests to optimize CAD modeling procedures based on the obtained measurement data.","PeriodicalId":504821,"journal":{"name":"Designs","volume":"37 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the Accuracy of CAD Modeling in Engineering and Medical Industries Based on Measurement Data Using Reverse Engineering Methods\",\"authors\":\"Paweł Turek, Wojciech Bezłada, Klaudia Cierpisz, Karol Dubiel, Adrian Frydrych, Jacek Misiura\",\"doi\":\"10.3390/designs8030050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reverse engineering (RE) process is often necessary in today’s engineering and medical industries. Expertise in measurement technology, data processing, and CAD modeling is required to ensure accurate reconstruction of an object’s geometry. However, errors are generated at every stage of geometric reconstruction, affecting the dimensional and geometric accuracy of the final 3D-CAD model. In this article, the geometry of reconstructed models was measured using contact and optical methods. The measurement data representing 2D profiles, 3D point clouds, and 2D images acquired in the reconstruction process were saved to a stereolithography (STL) model. The reconstructed models were then subjected to a CAD modeling process, and the accuracy of the parametric modeling was evaluated by comparing the 3D-CAD model to the 3D-STL model. Based on the results, the model used for clamping and positioning parts to perform the machining process and the connecting rod provided the most accurate mapping errors. These models represented deviations within ±0.02 mm and ±0.05 mm. The accuracy of CAD modeling for the turbine blade model and the pelvis part was comparable, presenting deviations within ±0.1 mm. However, the helical gear and the femur models showed the highest deviations of about ±0.2 mm. The procedures presented in the article specify the methods and resolution of the measurement systems and suggest CAD modeling strategies to minimize reconstruction errors. These results can be used as a starting point for further tests to optimize CAD modeling procedures based on the obtained measurement data.\",\"PeriodicalId\":504821,\"journal\":{\"name\":\"Designs\",\"volume\":\"37 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Designs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/designs8030050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/designs8030050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在当今的工程和医疗行业中,逆向工程 (RE) 流程是经常需要的。需要测量技术、数据处理和 CAD 建模方面的专业知识,以确保准确重建物体的几何形状。然而,几何重建的每个阶段都会产生误差,影响最终 3D-CAD 模型的尺寸和几何精度。本文使用接触法和光学法测量了重建模型的几何形状。在重建过程中获取的代表二维剖面、三维点云和二维图像的测量数据被保存到立体光刻(STL)模型中。然后对重建的模型进行 CAD 建模,并通过比较 3D-CAD 模型和 3D-STL 模型来评估参数建模的准确性。根据结果,用于夹紧和定位零件以执行加工过程的模型以及连杆提供了最精确的映射误差。这些模型的偏差分别在 ±0.02 毫米和 ±0.05 毫米以内。涡轮叶片模型和骨盆部件的 CAD 建模精度相当,偏差在 ±0.1 毫米以内。然而,螺旋齿轮和股骨模型的偏差最大,约为±0.2 毫米。文章中介绍的程序说明了测量系统的方法和分辨率,并提出了将重建误差降至最低的 CAD 建模策略。这些结果可作为进一步测试的起点,以便根据获得的测量数据优化 CAD 建模程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the Accuracy of CAD Modeling in Engineering and Medical Industries Based on Measurement Data Using Reverse Engineering Methods
The reverse engineering (RE) process is often necessary in today’s engineering and medical industries. Expertise in measurement technology, data processing, and CAD modeling is required to ensure accurate reconstruction of an object’s geometry. However, errors are generated at every stage of geometric reconstruction, affecting the dimensional and geometric accuracy of the final 3D-CAD model. In this article, the geometry of reconstructed models was measured using contact and optical methods. The measurement data representing 2D profiles, 3D point clouds, and 2D images acquired in the reconstruction process were saved to a stereolithography (STL) model. The reconstructed models were then subjected to a CAD modeling process, and the accuracy of the parametric modeling was evaluated by comparing the 3D-CAD model to the 3D-STL model. Based on the results, the model used for clamping and positioning parts to perform the machining process and the connecting rod provided the most accurate mapping errors. These models represented deviations within ±0.02 mm and ±0.05 mm. The accuracy of CAD modeling for the turbine blade model and the pelvis part was comparable, presenting deviations within ±0.1 mm. However, the helical gear and the femur models showed the highest deviations of about ±0.2 mm. The procedures presented in the article specify the methods and resolution of the measurement systems and suggest CAD modeling strategies to minimize reconstruction errors. These results can be used as a starting point for further tests to optimize CAD modeling procedures based on the obtained measurement data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信