用于评估和优化室内人群疏散监测应用毫米波雷达传感器的新型可移动人体模型平台

Fire Pub Date : 2024-05-24 DOI:10.3390/fire7060181
Qing Nian Chan, Dongli Gao, Yu Zhou, S. Xing, Guanxiong Zhai, Cheng Wang, Wei Wang, S. H. Lim, Eric Wai Ming Lee, Guan Heng Yeoh
{"title":"用于评估和优化室内人群疏散监测应用毫米波雷达传感器的新型可移动人体模型平台","authors":"Qing Nian Chan, Dongli Gao, Yu Zhou, S. Xing, Guanxiong Zhai, Cheng Wang, Wei Wang, S. H. Lim, Eric Wai Ming Lee, Guan Heng Yeoh","doi":"10.3390/fire7060181","DOIUrl":null,"url":null,"abstract":"Developing mmWave radar sensors for indoor crowd motion sensing and tracking faces a critical challenge: the scarcity of large-scale, high-quality training data. Traditional human experiments encounter logistical complexities, ethical considerations, and safety issues. Replicating precise human movements across trials introduces noise and inconsistency into the data. To address this, this study proposes a novel solution: a movable platform equipped with a life-size mannequin to generate realistic and diverse data points for mmWave radar training and testing. Unlike human subjects, the platform allows precise control over movements, optimising sensor placement relative to the target object. Preliminary optimisation results reveal that sensor height impacts tracking performance, with an optimal sensor placement above the test subject yields the best results. The results also reveal that the 3D data format outperforms 2D data in accuracy despite having fewer frames. Additionally, analysing height distribution using 3D data highlights the importance of the sensor angle—15° downwards from the horizontal plane.","PeriodicalId":12279,"journal":{"name":"Fire","volume":"9 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Movable Mannequin Platform for Evaluating and Optimising mmWave Radar Sensor for Indoor Crowd Evacuation Monitoring Applications\",\"authors\":\"Qing Nian Chan, Dongli Gao, Yu Zhou, S. Xing, Guanxiong Zhai, Cheng Wang, Wei Wang, S. H. Lim, Eric Wai Ming Lee, Guan Heng Yeoh\",\"doi\":\"10.3390/fire7060181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing mmWave radar sensors for indoor crowd motion sensing and tracking faces a critical challenge: the scarcity of large-scale, high-quality training data. Traditional human experiments encounter logistical complexities, ethical considerations, and safety issues. Replicating precise human movements across trials introduces noise and inconsistency into the data. To address this, this study proposes a novel solution: a movable platform equipped with a life-size mannequin to generate realistic and diverse data points for mmWave radar training and testing. Unlike human subjects, the platform allows precise control over movements, optimising sensor placement relative to the target object. Preliminary optimisation results reveal that sensor height impacts tracking performance, with an optimal sensor placement above the test subject yields the best results. The results also reveal that the 3D data format outperforms 2D data in accuracy despite having fewer frames. Additionally, analysing height distribution using 3D data highlights the importance of the sensor angle—15° downwards from the horizontal plane.\",\"PeriodicalId\":12279,\"journal\":{\"name\":\"Fire\",\"volume\":\"9 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fire\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fire7060181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fire7060181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

开发用于室内人群运动感应和跟踪的毫米波雷达传感器面临着一个严峻的挑战:缺乏大规模、高质量的训练数据。传统的人体实验会遇到后勤复杂性、伦理考虑和安全问题。在不同试验中复制精确的人体动作会给数据带来噪音和不一致性。为解决这一问题,本研究提出了一个新颖的解决方案:一个配备真人大小人体模型的可移动平台,可为毫米波雷达训练和测试生成真实、多样的数据点。与人体模型不同,该平台可以精确控制移动,优化传感器相对于目标物体的位置。初步优化结果表明,传感器高度会影响跟踪性能,将传感器放置在测试对象上方的最佳位置会产生最佳效果。结果还显示,尽管三维数据格式的帧数较少,但其准确性优于二维数据格式。此外,使用三维数据分析高度分布突出了传感器角度的重要性--从水平面向下 15°。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Movable Mannequin Platform for Evaluating and Optimising mmWave Radar Sensor for Indoor Crowd Evacuation Monitoring Applications
Developing mmWave radar sensors for indoor crowd motion sensing and tracking faces a critical challenge: the scarcity of large-scale, high-quality training data. Traditional human experiments encounter logistical complexities, ethical considerations, and safety issues. Replicating precise human movements across trials introduces noise and inconsistency into the data. To address this, this study proposes a novel solution: a movable platform equipped with a life-size mannequin to generate realistic and diverse data points for mmWave radar training and testing. Unlike human subjects, the platform allows precise control over movements, optimising sensor placement relative to the target object. Preliminary optimisation results reveal that sensor height impacts tracking performance, with an optimal sensor placement above the test subject yields the best results. The results also reveal that the 3D data format outperforms 2D data in accuracy despite having fewer frames. Additionally, analysing height distribution using 3D data highlights the importance of the sensor angle—15° downwards from the horizontal plane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信