面向未来电网的算法驱动智能管理与控制技术研究

Jun Li, Qi Fu, Pei Ruan
{"title":"面向未来电网的算法驱动智能管理与控制技术研究","authors":"Jun Li, Qi Fu, Pei Ruan","doi":"10.4108/ew.5824","DOIUrl":null,"url":null,"abstract":"An ever-more crucial architecture for both present and future electrical systems is a Power Grid (PG) that spans multiple areas comprising interlinked transmission lines, which may effectively reallocate energy resources on an extensive level. Preserving system equilibrium and increasing operating earnings are largely dependent on how the PG dispatches power using a variety of resources. The optimization techniques used to solve this dispatch issue today are not capable of making decisions or optimizing online; instead, they require doing the entire optimization computation at every dispatch instant. Herein, a novel Mutable Galaxy-based Search-tuned Flexible Deep Convolutional Neural Network (MGS-FDCNN) is presented as an online solution to targeted coordinated dispatch challenges in future PG. System optimization can be achieved using this strategy using only past operational data. First, a numerical model of the targeted coordination dispatch issue is created. Next, to solve the optimization challenges, we construct the MGS optimization approach. The effectiveness and accessibility of the suggested MGS-FDCNN approach are validated by the presentation of experimental data relying on the IEEE test bus network.","PeriodicalId":502230,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":"8 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Algorithm Driven Intelligent Management and Control Technology for Future Power Grid\",\"authors\":\"Jun Li, Qi Fu, Pei Ruan\",\"doi\":\"10.4108/ew.5824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ever-more crucial architecture for both present and future electrical systems is a Power Grid (PG) that spans multiple areas comprising interlinked transmission lines, which may effectively reallocate energy resources on an extensive level. Preserving system equilibrium and increasing operating earnings are largely dependent on how the PG dispatches power using a variety of resources. The optimization techniques used to solve this dispatch issue today are not capable of making decisions or optimizing online; instead, they require doing the entire optimization computation at every dispatch instant. Herein, a novel Mutable Galaxy-based Search-tuned Flexible Deep Convolutional Neural Network (MGS-FDCNN) is presented as an online solution to targeted coordinated dispatch challenges in future PG. System optimization can be achieved using this strategy using only past operational data. First, a numerical model of the targeted coordination dispatch issue is created. Next, to solve the optimization challenges, we construct the MGS optimization approach. The effectiveness and accessibility of the suggested MGS-FDCNN approach are validated by the presentation of experimental data relying on the IEEE test bus network.\",\"PeriodicalId\":502230,\"journal\":{\"name\":\"EAI Endorsed Transactions on Energy Web\",\"volume\":\"8 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Transactions on Energy Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/ew.5824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Energy Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ew.5824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电网(PG)是当前和未来电力系统中一个日益重要的架构,它由相互连接的输电线路组成,横跨多个地区,可以有效地重新分配广泛的能源资源。保持系统平衡和提高运营收益在很大程度上取决于电网如何利用各种资源调度电力。目前用于解决这一调度问题的优化技术无法进行在线决策或优化,而是需要在每个调度瞬间进行整个优化计算。在此,我们提出了一种新颖的基于可变银河系搜索调整的灵活深度卷积神经网络(MGS-FDCNN),作为一种在线解决方案,以应对未来 PG 中有针对性的协调调度挑战。利用这一策略,只需使用过去的运行数据即可实现系统优化。首先,创建目标协调调度问题的数值模型。接下来,为了解决优化难题,我们构建了 MGS 优化方法。基于 IEEE 测试总线网络的实验数据验证了所建议的 MGS-FDCNN 方法的有效性和易用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Algorithm Driven Intelligent Management and Control Technology for Future Power Grid
An ever-more crucial architecture for both present and future electrical systems is a Power Grid (PG) that spans multiple areas comprising interlinked transmission lines, which may effectively reallocate energy resources on an extensive level. Preserving system equilibrium and increasing operating earnings are largely dependent on how the PG dispatches power using a variety of resources. The optimization techniques used to solve this dispatch issue today are not capable of making decisions or optimizing online; instead, they require doing the entire optimization computation at every dispatch instant. Herein, a novel Mutable Galaxy-based Search-tuned Flexible Deep Convolutional Neural Network (MGS-FDCNN) is presented as an online solution to targeted coordinated dispatch challenges in future PG. System optimization can be achieved using this strategy using only past operational data. First, a numerical model of the targeted coordination dispatch issue is created. Next, to solve the optimization challenges, we construct the MGS optimization approach. The effectiveness and accessibility of the suggested MGS-FDCNN approach are validated by the presentation of experimental data relying on the IEEE test bus network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信