Spyridon Chaskis, Stavroula Maritsa, Paul Stavroulakis, S. Papadopoulou, Russell Goodall, S. Papaefthymiou
{"title":"新型无铅铜-锌-铝-锡中熵黄铜合金的成分设计与热加工","authors":"Spyridon Chaskis, Stavroula Maritsa, Paul Stavroulakis, S. Papadopoulou, Russell Goodall, S. Papaefthymiou","doi":"10.3390/met14060620","DOIUrl":null,"url":null,"abstract":"In the current work, a novel medium entropy copper alloy was designed with the aim of avoiding the use of expensive, hazardous or scarce alloying elements and instead employing widely available and cost-effective alternatives. In order to investigate this unknown region of multicomponent alloy compositions, the thermo-physical parameters were calculated and the CALPHAD method was utilized. This led to the design of the Cu50Zn25Al20Sn5 at. % (Cu53.45Zn27.49Al9.08Sn9.98 wt. %) alloy with a relatively low density of 6.86 g/cm3 compared with conventional brasses. The designed alloy was manufactured through vacuum induction melting, producing two ingots weighing 1.2 kg each, which were subjected to a series of heat treatments. The microstructural evolution of the alloy in the as-cast and heat-treated conditions was assessed through optical and scanning electron microscopy. The hardness of the as-cast and heat-treated alloy at room temperature was also studied. The alloy was characterized by a multiphase microstructure containing a major Cu-rich (Cu–Zn–Al) matrix reinforced with a secondary Zn-rich (Zn–Cu) phase and pure Sn. In terms of mechanical properties, the developed alloy exhibited high hardness values of roughly 378 HV0.2 and 499 HV0.2 in the as-cast and heat-treated conditions, respectively.","PeriodicalId":510812,"journal":{"name":"Metals","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compositional Design and Thermal Processing of a Novel Lead-Free Cu–Zn–Al–Sn Medium Entropy Brass Alloy\",\"authors\":\"Spyridon Chaskis, Stavroula Maritsa, Paul Stavroulakis, S. Papadopoulou, Russell Goodall, S. Papaefthymiou\",\"doi\":\"10.3390/met14060620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current work, a novel medium entropy copper alloy was designed with the aim of avoiding the use of expensive, hazardous or scarce alloying elements and instead employing widely available and cost-effective alternatives. In order to investigate this unknown region of multicomponent alloy compositions, the thermo-physical parameters were calculated and the CALPHAD method was utilized. This led to the design of the Cu50Zn25Al20Sn5 at. % (Cu53.45Zn27.49Al9.08Sn9.98 wt. %) alloy with a relatively low density of 6.86 g/cm3 compared with conventional brasses. The designed alloy was manufactured through vacuum induction melting, producing two ingots weighing 1.2 kg each, which were subjected to a series of heat treatments. The microstructural evolution of the alloy in the as-cast and heat-treated conditions was assessed through optical and scanning electron microscopy. The hardness of the as-cast and heat-treated alloy at room temperature was also studied. The alloy was characterized by a multiphase microstructure containing a major Cu-rich (Cu–Zn–Al) matrix reinforced with a secondary Zn-rich (Zn–Cu) phase and pure Sn. In terms of mechanical properties, the developed alloy exhibited high hardness values of roughly 378 HV0.2 and 499 HV0.2 in the as-cast and heat-treated conditions, respectively.\",\"PeriodicalId\":510812,\"journal\":{\"name\":\"Metals\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/met14060620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/met14060620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compositional Design and Thermal Processing of a Novel Lead-Free Cu–Zn–Al–Sn Medium Entropy Brass Alloy
In the current work, a novel medium entropy copper alloy was designed with the aim of avoiding the use of expensive, hazardous or scarce alloying elements and instead employing widely available and cost-effective alternatives. In order to investigate this unknown region of multicomponent alloy compositions, the thermo-physical parameters were calculated and the CALPHAD method was utilized. This led to the design of the Cu50Zn25Al20Sn5 at. % (Cu53.45Zn27.49Al9.08Sn9.98 wt. %) alloy with a relatively low density of 6.86 g/cm3 compared with conventional brasses. The designed alloy was manufactured through vacuum induction melting, producing two ingots weighing 1.2 kg each, which were subjected to a series of heat treatments. The microstructural evolution of the alloy in the as-cast and heat-treated conditions was assessed through optical and scanning electron microscopy. The hardness of the as-cast and heat-treated alloy at room temperature was also studied. The alloy was characterized by a multiphase microstructure containing a major Cu-rich (Cu–Zn–Al) matrix reinforced with a secondary Zn-rich (Zn–Cu) phase and pure Sn. In terms of mechanical properties, the developed alloy exhibited high hardness values of roughly 378 HV0.2 and 499 HV0.2 in the as-cast and heat-treated conditions, respectively.