Brenda Murage, Han Tan, Tomoji Mashimo, Mandy Jackson, Paul A Skehel
{"title":"8 型肌萎缩性脊髓侧索硬化症基因敲入模型大鼠的脊髓神经元缺失和足部位置变化","authors":"Brenda Murage, Han Tan, Tomoji Mashimo, Mandy Jackson, Paul A Skehel","doi":"10.1093/braincomms/fcae184","DOIUrl":null,"url":null,"abstract":"\n Amyotrophic Lateral Sclerosis is an age-dependent cell type-selective degenerative disease. Genetic studies indicate that Amyotrophic Lateral Sclerosis is part of a spectrum of disorders ranging from spinal muscular atrophy to frontotemporal dementia that share common pathological mechanisms. Amyotrophic Lateral Sclerosis type 8 is a familial disease caused by mis-sense mutations in VAPB. VAPB is localised to the cytoplasmic surface of the endoplasmic reticulum where it serves as a docking point for cytoplasmic proteins and mediates inter-organelle interactions with the endoplasmic reticulum membrane. A gene knock-in model of Amyotrophic Lateral Sclerosis type 8 based on the VapBP56S mutation and VapB gene deletion have been generated in the rat. These animals display a range of age-dependent phenotypes distinct from those previously reported in mouse models of Amyotrophic Lateral Sclerosis type 8. A loss of motor neurones in VapBP56S/+ and VapBP56S/P56Sanimals is indicated by a reduction in the number of large choline acetyl transferase-staining cells in the spinal cord. VapB-/-animals exhibit a relative increase in cytoplasmic TDP-43 levels compared to the nucleus, but no large protein aggregates. Concomitant with these spinal cord pathologies VapBP56S/+, VapBP56S/P56S and VapB-/-animals exhibit age-dependent changes in paw placement and exerted pressures when traversing a CatWalk apparatus, consistent with a somatosensory dysfunction. Extra motor dysfunction is reported in half the cases of motor neurone disease, and this is the first indication of an associated sensory dysfunction in a rodent model of Amyotrophic Lateral Sclerosis. Different rodent models may offer complementary experimental platforms with which to understand the human disease.","PeriodicalId":9318,"journal":{"name":"Brain Communications","volume":"2 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spinal cord neurone loss and foot placement changes in a rat knock-in model of amyotrophic lateral sclerosis type 8\",\"authors\":\"Brenda Murage, Han Tan, Tomoji Mashimo, Mandy Jackson, Paul A Skehel\",\"doi\":\"10.1093/braincomms/fcae184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Amyotrophic Lateral Sclerosis is an age-dependent cell type-selective degenerative disease. Genetic studies indicate that Amyotrophic Lateral Sclerosis is part of a spectrum of disorders ranging from spinal muscular atrophy to frontotemporal dementia that share common pathological mechanisms. Amyotrophic Lateral Sclerosis type 8 is a familial disease caused by mis-sense mutations in VAPB. VAPB is localised to the cytoplasmic surface of the endoplasmic reticulum where it serves as a docking point for cytoplasmic proteins and mediates inter-organelle interactions with the endoplasmic reticulum membrane. A gene knock-in model of Amyotrophic Lateral Sclerosis type 8 based on the VapBP56S mutation and VapB gene deletion have been generated in the rat. These animals display a range of age-dependent phenotypes distinct from those previously reported in mouse models of Amyotrophic Lateral Sclerosis type 8. A loss of motor neurones in VapBP56S/+ and VapBP56S/P56Sanimals is indicated by a reduction in the number of large choline acetyl transferase-staining cells in the spinal cord. VapB-/-animals exhibit a relative increase in cytoplasmic TDP-43 levels compared to the nucleus, but no large protein aggregates. Concomitant with these spinal cord pathologies VapBP56S/+, VapBP56S/P56S and VapB-/-animals exhibit age-dependent changes in paw placement and exerted pressures when traversing a CatWalk apparatus, consistent with a somatosensory dysfunction. Extra motor dysfunction is reported in half the cases of motor neurone disease, and this is the first indication of an associated sensory dysfunction in a rodent model of Amyotrophic Lateral Sclerosis. Different rodent models may offer complementary experimental platforms with which to understand the human disease.\",\"PeriodicalId\":9318,\"journal\":{\"name\":\"Brain Communications\",\"volume\":\"2 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/braincomms/fcae184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/braincomms/fcae184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spinal cord neurone loss and foot placement changes in a rat knock-in model of amyotrophic lateral sclerosis type 8
Amyotrophic Lateral Sclerosis is an age-dependent cell type-selective degenerative disease. Genetic studies indicate that Amyotrophic Lateral Sclerosis is part of a spectrum of disorders ranging from spinal muscular atrophy to frontotemporal dementia that share common pathological mechanisms. Amyotrophic Lateral Sclerosis type 8 is a familial disease caused by mis-sense mutations in VAPB. VAPB is localised to the cytoplasmic surface of the endoplasmic reticulum where it serves as a docking point for cytoplasmic proteins and mediates inter-organelle interactions with the endoplasmic reticulum membrane. A gene knock-in model of Amyotrophic Lateral Sclerosis type 8 based on the VapBP56S mutation and VapB gene deletion have been generated in the rat. These animals display a range of age-dependent phenotypes distinct from those previously reported in mouse models of Amyotrophic Lateral Sclerosis type 8. A loss of motor neurones in VapBP56S/+ and VapBP56S/P56Sanimals is indicated by a reduction in the number of large choline acetyl transferase-staining cells in the spinal cord. VapB-/-animals exhibit a relative increase in cytoplasmic TDP-43 levels compared to the nucleus, but no large protein aggregates. Concomitant with these spinal cord pathologies VapBP56S/+, VapBP56S/P56S and VapB-/-animals exhibit age-dependent changes in paw placement and exerted pressures when traversing a CatWalk apparatus, consistent with a somatosensory dysfunction. Extra motor dysfunction is reported in half the cases of motor neurone disease, and this is the first indication of an associated sensory dysfunction in a rodent model of Amyotrophic Lateral Sclerosis. Different rodent models may offer complementary experimental platforms with which to understand the human disease.