Elisa Carolina Lange, P. H. Rampelotto, Larisse Longo, Laura Bainy Rodrigues de Freitas, Carolina Uribe-Cruz, Mario Reis Alvares-da-Silva
{"title":"天冬氨酸鸟氨酸对脂肪肝大鼠模型中细菌组成和代谢途径的影响","authors":"Elisa Carolina Lange, P. H. Rampelotto, Larisse Longo, Laura Bainy Rodrigues de Freitas, Carolina Uribe-Cruz, Mario Reis Alvares-da-Silva","doi":"10.4254/wjh.v16.i5.832","DOIUrl":null,"url":null,"abstract":"BACKGROUND\n Metabolic-dysfunction associated steatotic liver disease (MASLD) is a hepatic manifestation of metabolic syndrome. Studies suggest ornithine aspartate (LOLA) as drug therapy.\n AIM\n To analyze the influence of LOLA intake on gut microbiota using a nutritional model of MASLD.\n METHODS\n Adult male Sprague Dawley rats were randomized into three groups: Control (10 rats fed with a standard diet), MASLD (10 rats fed with a high-fat and choline-deficient diet), and LOLA (10 rats receiving 200 mg/kg/d LOLA, after the 16th week receiving high-fat and choline-deficient diet). After 28 wk of the experiment, animals were euthanized, and feces present in the intestine were collected. Following fecal DNA extraction, the V4 region of the 16S rRNA gene was amplified followed by sequencing in an Ion S5™ system.\n RESULTS\n Alpha and beta diversity metrics were comparable between MASLD and LOLA. 3 OTUs were differentially abundant between MASLD and LOLA, which belong to the species Helicobacter rodentium , Parabacteroides goldsteinii , and Parabacteroides distasonis . The functional prediction provided two different metabolic profiles between MASLD and LOLA. The 9 pathways differentially abundant in MASLD are related to a change in energy source, adenosine/purine nucleotides degradation as well as guanosine and adenosine deoxyribonucleotides biosynthesis. The 14 pathways differentially abundant in LOLA are associated with four major metabolic functions primarily influenced by L-aspartate, including tricarboxylic acid cycle pathways, purine/guanosine nucleotides biosynthesis, pyrimidine ribonucleotides biosynthesis and salvage as well as lipid IVA biosynthesis.\n CONCLUSION\n Although LOLA had no influence on alpha and beta diversity in this nutritional model of MASLD, it was associated with changes in specific gut microbes and their related metabolic pathways.","PeriodicalId":23687,"journal":{"name":"World Journal of Hepatology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ornithine aspartate effects on bacterial composition and metabolic pathways in a rat model of steatotic liver disease\",\"authors\":\"Elisa Carolina Lange, P. H. Rampelotto, Larisse Longo, Laura Bainy Rodrigues de Freitas, Carolina Uribe-Cruz, Mario Reis Alvares-da-Silva\",\"doi\":\"10.4254/wjh.v16.i5.832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND\\n Metabolic-dysfunction associated steatotic liver disease (MASLD) is a hepatic manifestation of metabolic syndrome. Studies suggest ornithine aspartate (LOLA) as drug therapy.\\n AIM\\n To analyze the influence of LOLA intake on gut microbiota using a nutritional model of MASLD.\\n METHODS\\n Adult male Sprague Dawley rats were randomized into three groups: Control (10 rats fed with a standard diet), MASLD (10 rats fed with a high-fat and choline-deficient diet), and LOLA (10 rats receiving 200 mg/kg/d LOLA, after the 16th week receiving high-fat and choline-deficient diet). After 28 wk of the experiment, animals were euthanized, and feces present in the intestine were collected. Following fecal DNA extraction, the V4 region of the 16S rRNA gene was amplified followed by sequencing in an Ion S5™ system.\\n RESULTS\\n Alpha and beta diversity metrics were comparable between MASLD and LOLA. 3 OTUs were differentially abundant between MASLD and LOLA, which belong to the species Helicobacter rodentium , Parabacteroides goldsteinii , and Parabacteroides distasonis . The functional prediction provided two different metabolic profiles between MASLD and LOLA. The 9 pathways differentially abundant in MASLD are related to a change in energy source, adenosine/purine nucleotides degradation as well as guanosine and adenosine deoxyribonucleotides biosynthesis. The 14 pathways differentially abundant in LOLA are associated with four major metabolic functions primarily influenced by L-aspartate, including tricarboxylic acid cycle pathways, purine/guanosine nucleotides biosynthesis, pyrimidine ribonucleotides biosynthesis and salvage as well as lipid IVA biosynthesis.\\n CONCLUSION\\n Although LOLA had no influence on alpha and beta diversity in this nutritional model of MASLD, it was associated with changes in specific gut microbes and their related metabolic pathways.\",\"PeriodicalId\":23687,\"journal\":{\"name\":\"World Journal of Hepatology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Hepatology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4254/wjh.v16.i5.832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Hepatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4254/wjh.v16.i5.832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Ornithine aspartate effects on bacterial composition and metabolic pathways in a rat model of steatotic liver disease
BACKGROUND
Metabolic-dysfunction associated steatotic liver disease (MASLD) is a hepatic manifestation of metabolic syndrome. Studies suggest ornithine aspartate (LOLA) as drug therapy.
AIM
To analyze the influence of LOLA intake on gut microbiota using a nutritional model of MASLD.
METHODS
Adult male Sprague Dawley rats were randomized into three groups: Control (10 rats fed with a standard diet), MASLD (10 rats fed with a high-fat and choline-deficient diet), and LOLA (10 rats receiving 200 mg/kg/d LOLA, after the 16th week receiving high-fat and choline-deficient diet). After 28 wk of the experiment, animals were euthanized, and feces present in the intestine were collected. Following fecal DNA extraction, the V4 region of the 16S rRNA gene was amplified followed by sequencing in an Ion S5™ system.
RESULTS
Alpha and beta diversity metrics were comparable between MASLD and LOLA. 3 OTUs were differentially abundant between MASLD and LOLA, which belong to the species Helicobacter rodentium , Parabacteroides goldsteinii , and Parabacteroides distasonis . The functional prediction provided two different metabolic profiles between MASLD and LOLA. The 9 pathways differentially abundant in MASLD are related to a change in energy source, adenosine/purine nucleotides degradation as well as guanosine and adenosine deoxyribonucleotides biosynthesis. The 14 pathways differentially abundant in LOLA are associated with four major metabolic functions primarily influenced by L-aspartate, including tricarboxylic acid cycle pathways, purine/guanosine nucleotides biosynthesis, pyrimidine ribonucleotides biosynthesis and salvage as well as lipid IVA biosynthesis.
CONCLUSION
Although LOLA had no influence on alpha and beta diversity in this nutritional model of MASLD, it was associated with changes in specific gut microbes and their related metabolic pathways.