{"title":"幂律流体在受热、不均匀和多孔斜面上流动时的长波不稳定性:双面模型","authors":"Jean Paul Pascal , Andrea Vacca","doi":"10.1016/j.jnnfm.2024.105260","DOIUrl":null,"url":null,"abstract":"<div><p>The stability conditions of a two-dimensional gravity-driven flow of a thin layer of a power-law fluid flowing over a heated, uneven, inclined porous surface are investigated. A two-sided model is employed to account for the bottom filtration in the porous layer. The governing equations are reduced under the long-wave approximation and the cross-stream dependence is eliminated by means of the Integral Boundary Layer technique. Floquet–Bloch theory is used to investigate at linear level how the porous bottom waviness influences the thermocapillarity stability of the flow in a shear-thinning fluid. Differently from the even case, the linear stability analysis suggests that for flow over sufficiently wavy undulations the thermocapillarity may stabilize the equilibrium flow, depending on the values of dimensionless governing numbers and parameters. This stabilizing phenomenon is enhanced by the shear-thinning rheology of the fluid while it is reduced by the permeability of the layer. Numerical simulations, performed solving the reduced nonlinear model through a second order Finite Volume scheme, confirm the results of the linear stability analysis.</p></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"329 ","pages":"Article 105260"},"PeriodicalIF":2.7000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-wave instabilities of a power-law fluid flowing over a heated, uneven and porous incline: A two-sided model\",\"authors\":\"Jean Paul Pascal , Andrea Vacca\",\"doi\":\"10.1016/j.jnnfm.2024.105260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The stability conditions of a two-dimensional gravity-driven flow of a thin layer of a power-law fluid flowing over a heated, uneven, inclined porous surface are investigated. A two-sided model is employed to account for the bottom filtration in the porous layer. The governing equations are reduced under the long-wave approximation and the cross-stream dependence is eliminated by means of the Integral Boundary Layer technique. Floquet–Bloch theory is used to investigate at linear level how the porous bottom waviness influences the thermocapillarity stability of the flow in a shear-thinning fluid. Differently from the even case, the linear stability analysis suggests that for flow over sufficiently wavy undulations the thermocapillarity may stabilize the equilibrium flow, depending on the values of dimensionless governing numbers and parameters. This stabilizing phenomenon is enhanced by the shear-thinning rheology of the fluid while it is reduced by the permeability of the layer. Numerical simulations, performed solving the reduced nonlinear model through a second order Finite Volume scheme, confirm the results of the linear stability analysis.</p></div>\",\"PeriodicalId\":54782,\"journal\":{\"name\":\"Journal of Non-Newtonian Fluid Mechanics\",\"volume\":\"329 \",\"pages\":\"Article 105260\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Newtonian Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377025724000764\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025724000764","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Long-wave instabilities of a power-law fluid flowing over a heated, uneven and porous incline: A two-sided model
The stability conditions of a two-dimensional gravity-driven flow of a thin layer of a power-law fluid flowing over a heated, uneven, inclined porous surface are investigated. A two-sided model is employed to account for the bottom filtration in the porous layer. The governing equations are reduced under the long-wave approximation and the cross-stream dependence is eliminated by means of the Integral Boundary Layer technique. Floquet–Bloch theory is used to investigate at linear level how the porous bottom waviness influences the thermocapillarity stability of the flow in a shear-thinning fluid. Differently from the even case, the linear stability analysis suggests that for flow over sufficiently wavy undulations the thermocapillarity may stabilize the equilibrium flow, depending on the values of dimensionless governing numbers and parameters. This stabilizing phenomenon is enhanced by the shear-thinning rheology of the fluid while it is reduced by the permeability of the layer. Numerical simulations, performed solving the reduced nonlinear model through a second order Finite Volume scheme, confirm the results of the linear stability analysis.
期刊介绍:
The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest.
Subjects considered suitable for the journal include the following (not necessarily in order of importance):
Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include
Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids,
Multiphase flows involving complex fluids,
Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena,
Novel flow situations that suggest the need for further theoretical study,
Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.