H.W. Niu , H. Bian , X. Liu , X.G. Song , H.Y. Zhao
{"title":"垂直超声振动下 Cu/Sn/Cu 互连系统中 Cu6Sn5 金属间化合物的非对称生长","authors":"H.W. Niu , H. Bian , X. Liu , X.G. Song , H.Y. Zhao","doi":"10.1016/j.intermet.2024.108337","DOIUrl":null,"url":null,"abstract":"<div><p>The asymmetric growth of Cu<sub>6</sub>Sn<sub>5</sub> intermetallic compound (IMC) in a Cu/Sn/Cu interconnection system was studied during the transient liquid phase (TLP) soldering process with the assistance of the vertical ultrasonic vibration. Being different from the symmetrical growth during isothermal aging without ultrasonic waves (USW), highly asymmetrical growth of Cu<sub>6</sub>Sn<sub>5</sub> at the upper and down Sn/Cu interfaces was observed with the vertical USW, i.e., Cu<sub>6</sub>Sn<sub>5</sub> grains exhibited scallop-type morphology, and were discrete at the upper Sn/Cu interface (the side of ultrasonic action); while that at the lower Sn/Cu interface (the opposite side of ultrasonic action) exhibited column-type morphology, and were conterminous. Under the assistance of USW, the Cu<sub>6</sub>Sn<sub>5</sub> grains were remarkably refined, the shear strength of joint was increased, and the fracture mode was changed from transgranular fracture to transgranular and intergranular fracture. This anomalous behavior can be completely ascribed to the asymmetrical ultrasonic effects across the entire Sn the intermediate layer of Sn.</p></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymmetric growth of Cu6Sn5 intermetallic compound in Cu/Sn/Cu interconnection system under the vertical ultrasonic vibration\",\"authors\":\"H.W. Niu , H. Bian , X. Liu , X.G. Song , H.Y. Zhao\",\"doi\":\"10.1016/j.intermet.2024.108337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The asymmetric growth of Cu<sub>6</sub>Sn<sub>5</sub> intermetallic compound (IMC) in a Cu/Sn/Cu interconnection system was studied during the transient liquid phase (TLP) soldering process with the assistance of the vertical ultrasonic vibration. Being different from the symmetrical growth during isothermal aging without ultrasonic waves (USW), highly asymmetrical growth of Cu<sub>6</sub>Sn<sub>5</sub> at the upper and down Sn/Cu interfaces was observed with the vertical USW, i.e., Cu<sub>6</sub>Sn<sub>5</sub> grains exhibited scallop-type morphology, and were discrete at the upper Sn/Cu interface (the side of ultrasonic action); while that at the lower Sn/Cu interface (the opposite side of ultrasonic action) exhibited column-type morphology, and were conterminous. Under the assistance of USW, the Cu<sub>6</sub>Sn<sub>5</sub> grains were remarkably refined, the shear strength of joint was increased, and the fracture mode was changed from transgranular fracture to transgranular and intergranular fracture. This anomalous behavior can be completely ascribed to the asymmetrical ultrasonic effects across the entire Sn the intermediate layer of Sn.</p></div>\",\"PeriodicalId\":331,\"journal\":{\"name\":\"Intermetallics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intermetallics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966979524001560\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979524001560","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Asymmetric growth of Cu6Sn5 intermetallic compound in Cu/Sn/Cu interconnection system under the vertical ultrasonic vibration
The asymmetric growth of Cu6Sn5 intermetallic compound (IMC) in a Cu/Sn/Cu interconnection system was studied during the transient liquid phase (TLP) soldering process with the assistance of the vertical ultrasonic vibration. Being different from the symmetrical growth during isothermal aging without ultrasonic waves (USW), highly asymmetrical growth of Cu6Sn5 at the upper and down Sn/Cu interfaces was observed with the vertical USW, i.e., Cu6Sn5 grains exhibited scallop-type morphology, and were discrete at the upper Sn/Cu interface (the side of ultrasonic action); while that at the lower Sn/Cu interface (the opposite side of ultrasonic action) exhibited column-type morphology, and were conterminous. Under the assistance of USW, the Cu6Sn5 grains were remarkably refined, the shear strength of joint was increased, and the fracture mode was changed from transgranular fracture to transgranular and intergranular fracture. This anomalous behavior can be completely ascribed to the asymmetrical ultrasonic effects across the entire Sn the intermediate layer of Sn.
期刊介绍:
This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys.
The journal reports the science and engineering of metallic materials in the following aspects:
Theories and experiments which address the relationship between property and structure in all length scales.
Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations.
Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties.
Technological applications resulting from the understanding of property-structure relationship in materials.
Novel and cutting-edge results warranting rapid communication.
The journal also publishes special issues on selected topics and overviews by invitation only.