Ava Aghakhani, Parmida Sadat Pezeshki, Nima Rezaei
{"title":"细胞外囊泡在免疫细胞衰竭和免疫疗法抗药性中的作用。","authors":"Ava Aghakhani, Parmida Sadat Pezeshki, Nima Rezaei","doi":"10.1080/13543784.2024.2360209","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Extracellular vesicles (EVs) are membrane-bound nanoparticles for intercellular communication. Subtypes of EVs, namely exosomes and microvesicles transfer diverse, bioactive cargo to their target cells and eventually interfere with immune responses. Despite being a promising approach, cancer immunotherapy currently faces several challenges including immune resistance. EVs secreted from various sources in the tumor microenvironment provoke immune cell exhaustion and lower the efficacy of immunological treatments, such as CAR T cells and immune checkpoint inhibitors.</p><p><strong>Areas covered: </strong>This article goes through the mechanisms of action of various types of EVs in inhibiting immune response and immunotherapies, and provides a comprehensive review of EV-based treatments.</p><p><strong>Expert opinion: </strong>By making use of the distinctive features of EVs, natural or modified EVs are innovatively utilized as novel cancer therapeutics. They are occasionally coupled with currently established treatments to overcome their inadequacies. Investigating the properties and interactions of EVs and EV-based treatments is crucial for determining future steps in cancer therapeutics.</p>","PeriodicalId":12313,"journal":{"name":"Expert opinion on investigational drugs","volume":" ","pages":"721-740"},"PeriodicalIF":4.9000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of extracellular vesicles in immune cell exhaustion and resistance to immunotherapy.\",\"authors\":\"Ava Aghakhani, Parmida Sadat Pezeshki, Nima Rezaei\",\"doi\":\"10.1080/13543784.2024.2360209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Extracellular vesicles (EVs) are membrane-bound nanoparticles for intercellular communication. Subtypes of EVs, namely exosomes and microvesicles transfer diverse, bioactive cargo to their target cells and eventually interfere with immune responses. Despite being a promising approach, cancer immunotherapy currently faces several challenges including immune resistance. EVs secreted from various sources in the tumor microenvironment provoke immune cell exhaustion and lower the efficacy of immunological treatments, such as CAR T cells and immune checkpoint inhibitors.</p><p><strong>Areas covered: </strong>This article goes through the mechanisms of action of various types of EVs in inhibiting immune response and immunotherapies, and provides a comprehensive review of EV-based treatments.</p><p><strong>Expert opinion: </strong>By making use of the distinctive features of EVs, natural or modified EVs are innovatively utilized as novel cancer therapeutics. They are occasionally coupled with currently established treatments to overcome their inadequacies. Investigating the properties and interactions of EVs and EV-based treatments is crucial for determining future steps in cancer therapeutics.</p>\",\"PeriodicalId\":12313,\"journal\":{\"name\":\"Expert opinion on investigational drugs\",\"volume\":\" \",\"pages\":\"721-740\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert opinion on investigational drugs\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/13543784.2024.2360209\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert opinion on investigational drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/13543784.2024.2360209","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
The role of extracellular vesicles in immune cell exhaustion and resistance to immunotherapy.
Introduction: Extracellular vesicles (EVs) are membrane-bound nanoparticles for intercellular communication. Subtypes of EVs, namely exosomes and microvesicles transfer diverse, bioactive cargo to their target cells and eventually interfere with immune responses. Despite being a promising approach, cancer immunotherapy currently faces several challenges including immune resistance. EVs secreted from various sources in the tumor microenvironment provoke immune cell exhaustion and lower the efficacy of immunological treatments, such as CAR T cells and immune checkpoint inhibitors.
Areas covered: This article goes through the mechanisms of action of various types of EVs in inhibiting immune response and immunotherapies, and provides a comprehensive review of EV-based treatments.
Expert opinion: By making use of the distinctive features of EVs, natural or modified EVs are innovatively utilized as novel cancer therapeutics. They are occasionally coupled with currently established treatments to overcome their inadequacies. Investigating the properties and interactions of EVs and EV-based treatments is crucial for determining future steps in cancer therapeutics.
期刊介绍:
Expert Opinion on Investigational Drugs (ISSN 1354-3784 [print], 1744-7658 [electronic]) is a MEDLINE-indexed, peer-reviewed, international journal publishing review articles and original papers on drugs in preclinical and early stage clinical development, providing expert opinion on the scope for future development.
The Editors welcome:
Reviews covering preclinical through to Phase II data on drugs or drug classes for specific indications, and their potential impact on future treatment strategies
Drug Evaluations reviewing the clinical and pharmacological data on a particular drug
Original Research papers reporting the results of clinical investigations on agents that are in Phase I and II clinical trials
The audience consists of scientists, managers and decision-makers in the pharmaceutical industry, and others closely involved in R&D.