适用于粗糙哈密顿系统的交映法随机修正方程

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Chuchu Chen, Jialin Hong, Chuying Huang
{"title":"适用于粗糙哈密顿系统的交映法随机修正方程","authors":"Chuchu Chen, Jialin Hong, Chuying Huang","doi":"10.1093/imanum/drae019","DOIUrl":null,"url":null,"abstract":"We investigate stochastic modified equations to explain the mathematical mechanism of symplectic methods applied to rough Hamiltonian systems. The contribution of this paper is threefold. First, we construct a new type of stochastic modified equation. For symplectic methods applied to rough Hamiltonian systems, the associated stochastic modified equations are proved to have Hamiltonian formulations. Secondly, the pathwise convergence order of the truncated modified equation to the numerical method is obtained by techniques in rough path theory. Thirdly, if increments of noises are simulated by truncated random variables, we show that the error can be made exponentially small with respect to the time step size.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"72 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic modified equations for symplectic methods applied to rough Hamiltonian systems\",\"authors\":\"Chuchu Chen, Jialin Hong, Chuying Huang\",\"doi\":\"10.1093/imanum/drae019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate stochastic modified equations to explain the mathematical mechanism of symplectic methods applied to rough Hamiltonian systems. The contribution of this paper is threefold. First, we construct a new type of stochastic modified equation. For symplectic methods applied to rough Hamiltonian systems, the associated stochastic modified equations are proved to have Hamiltonian formulations. Secondly, the pathwise convergence order of the truncated modified equation to the numerical method is obtained by techniques in rough path theory. Thirdly, if increments of noises are simulated by truncated random variables, we show that the error can be made exponentially small with respect to the time step size.\",\"PeriodicalId\":56295,\"journal\":{\"name\":\"IMA Journal of Numerical Analysis\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imanum/drae019\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/drae019","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了随机修正方程,以解释将对称方法应用于粗糙哈密顿系统的数学机制。本文有三方面的贡献。首先,我们构建了一种新型随机修正方程。对于应用于粗糙哈密顿系统的交点法,相关的随机修正方程被证明具有哈密顿形式。其次,通过粗糙路径理论的技术获得了截断修正方程对数值方法的路径收敛阶数。第三,如果用截断随机变量模拟噪声的增量,我们证明误差可随时间步长呈指数级减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic modified equations for symplectic methods applied to rough Hamiltonian systems
We investigate stochastic modified equations to explain the mathematical mechanism of symplectic methods applied to rough Hamiltonian systems. The contribution of this paper is threefold. First, we construct a new type of stochastic modified equation. For symplectic methods applied to rough Hamiltonian systems, the associated stochastic modified equations are proved to have Hamiltonian formulations. Secondly, the pathwise convergence order of the truncated modified equation to the numerical method is obtained by techniques in rough path theory. Thirdly, if increments of noises are simulated by truncated random variables, we show that the error can be made exponentially small with respect to the time step size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信