Zhengjun Wang;Weifeng Gao;Genghui Li;Zhenkun Wang;Maoguo Gong
{"title":"通过增强探索的非策略强化学习实现无人飞行器的路径规划","authors":"Zhengjun Wang;Weifeng Gao;Genghui Li;Zhenkun Wang;Maoguo Gong","doi":"10.1109/TETCI.2024.3369485","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAVs) are widely used in urban search and rescue, where path planning plays a critical role. This paper proposes an approach using off-policy reinforcement learning (RL) with an improved exploration mechanism (IEM) based on prioritized experience replay (PER) and curiosity-driven exploration to address the time-constrained path planning problem for UAVs operating in complex unknown environments. Firstly, to meet the task's time constraints, we design a rollout algorithm based on PER to optimize the behavior policy and enhance sampling efficiency. Additionally, we address the issue that certain off-policy RL algorithms often get trapped in local optima in environments with sparse rewards by measuring curiosity using the states' unvisited time and generating intrinsic rewards to encourage exploration. Lastly, we introduce IEM into the sampling stage of various off-policy RL algorithms. Simulation experiments demonstrate that, compared to the original off-policy RL algorithms, the algorithms incorporating IEM can reduce the planning time required for rescuing paths and achieve the goal of rescuing all trapped individuals.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 3","pages":"2625-2639"},"PeriodicalIF":5.3000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path Planning for Unmanned Aerial Vehicle via Off-Policy Reinforcement Learning With Enhanced Exploration\",\"authors\":\"Zhengjun Wang;Weifeng Gao;Genghui Li;Zhenkun Wang;Maoguo Gong\",\"doi\":\"10.1109/TETCI.2024.3369485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned aerial vehicles (UAVs) are widely used in urban search and rescue, where path planning plays a critical role. This paper proposes an approach using off-policy reinforcement learning (RL) with an improved exploration mechanism (IEM) based on prioritized experience replay (PER) and curiosity-driven exploration to address the time-constrained path planning problem for UAVs operating in complex unknown environments. Firstly, to meet the task's time constraints, we design a rollout algorithm based on PER to optimize the behavior policy and enhance sampling efficiency. Additionally, we address the issue that certain off-policy RL algorithms often get trapped in local optima in environments with sparse rewards by measuring curiosity using the states' unvisited time and generating intrinsic rewards to encourage exploration. Lastly, we introduce IEM into the sampling stage of various off-policy RL algorithms. Simulation experiments demonstrate that, compared to the original off-policy RL algorithms, the algorithms incorporating IEM can reduce the planning time required for rescuing paths and achieve the goal of rescuing all trapped individuals.\",\"PeriodicalId\":13135,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"volume\":\"8 3\",\"pages\":\"2625-2639\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10478216/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10478216/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Path Planning for Unmanned Aerial Vehicle via Off-Policy Reinforcement Learning With Enhanced Exploration
Unmanned aerial vehicles (UAVs) are widely used in urban search and rescue, where path planning plays a critical role. This paper proposes an approach using off-policy reinforcement learning (RL) with an improved exploration mechanism (IEM) based on prioritized experience replay (PER) and curiosity-driven exploration to address the time-constrained path planning problem for UAVs operating in complex unknown environments. Firstly, to meet the task's time constraints, we design a rollout algorithm based on PER to optimize the behavior policy and enhance sampling efficiency. Additionally, we address the issue that certain off-policy RL algorithms often get trapped in local optima in environments with sparse rewards by measuring curiosity using the states' unvisited time and generating intrinsic rewards to encourage exploration. Lastly, we introduce IEM into the sampling stage of various off-policy RL algorithms. Simulation experiments demonstrate that, compared to the original off-policy RL algorithms, the algorithms incorporating IEM can reduce the planning time required for rescuing paths and achieve the goal of rescuing all trapped individuals.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.