{"title":"进化双方多目标无人机路径规划:问题与经验比较","authors":"Kesheng Chen;Wenjian Luo;Xin Lin;Zhen Song;Yatong Chang","doi":"10.1109/TETCI.2024.3361755","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAVs) have been widely used in urban missions, and proper planning of UAV paths can improve mission efficiency while reducing the risk of potential third-party impact. Existing work has considered all efficiency and safety objectives for a single decision-maker (DM) and regarded this as a multiobjective optimization problem (MOP). However, there is usually not a single DM but two DMs, i.e., an efficiency DM and a safety DM, and the DMs are only concerned with their respective objectives. The final decision is made based on the solutions of both DMs. In this paper, for the first time, biparty multiobjective UAV path planning (BPMO-UAVPP) problems involving both efficiency and safety departments are modeled. The existing multiobjective immune algorithm with nondominated neighbor-based selection (NNIA), the hybrid evolutionary framework for the multiobjective immune algorithm (HEIA), and the adaptive immune-inspired multiobjective algorithm (AIMA) are modified for solving the BPMO-UAVPP problem, and then biparty multiobjective optimization algorithms, including the BPNNIA, BPHEIA, and BPAIMA, are proposed and comprehensively compared with traditional multiobjective evolutionary algorithms and typical multiparty multiobjective evolutionary algorithms (i.e., OptMPNDS and OptMPNDS2). The experimental results show that BPAIMA performs better than ordinary multiobjective evolutionary algorithms such as NSGA-II and multiparty multiobjective evolutionary algorithms such as OptMPNDS, OptMPNDS2, BPNNIA and BPHEIA.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 3","pages":"2433-2445"},"PeriodicalIF":5.3000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionary Biparty Multiobjective UAV Path Planning: Problems and Empirical Comparisons\",\"authors\":\"Kesheng Chen;Wenjian Luo;Xin Lin;Zhen Song;Yatong Chang\",\"doi\":\"10.1109/TETCI.2024.3361755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned aerial vehicles (UAVs) have been widely used in urban missions, and proper planning of UAV paths can improve mission efficiency while reducing the risk of potential third-party impact. Existing work has considered all efficiency and safety objectives for a single decision-maker (DM) and regarded this as a multiobjective optimization problem (MOP). However, there is usually not a single DM but two DMs, i.e., an efficiency DM and a safety DM, and the DMs are only concerned with their respective objectives. The final decision is made based on the solutions of both DMs. In this paper, for the first time, biparty multiobjective UAV path planning (BPMO-UAVPP) problems involving both efficiency and safety departments are modeled. The existing multiobjective immune algorithm with nondominated neighbor-based selection (NNIA), the hybrid evolutionary framework for the multiobjective immune algorithm (HEIA), and the adaptive immune-inspired multiobjective algorithm (AIMA) are modified for solving the BPMO-UAVPP problem, and then biparty multiobjective optimization algorithms, including the BPNNIA, BPHEIA, and BPAIMA, are proposed and comprehensively compared with traditional multiobjective evolutionary algorithms and typical multiparty multiobjective evolutionary algorithms (i.e., OptMPNDS and OptMPNDS2). The experimental results show that BPAIMA performs better than ordinary multiobjective evolutionary algorithms such as NSGA-II and multiparty multiobjective evolutionary algorithms such as OptMPNDS, OptMPNDS2, BPNNIA and BPHEIA.\",\"PeriodicalId\":13135,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"volume\":\"8 3\",\"pages\":\"2433-2445\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10463192/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10463192/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Evolutionary Biparty Multiobjective UAV Path Planning: Problems and Empirical Comparisons
Unmanned aerial vehicles (UAVs) have been widely used in urban missions, and proper planning of UAV paths can improve mission efficiency while reducing the risk of potential third-party impact. Existing work has considered all efficiency and safety objectives for a single decision-maker (DM) and regarded this as a multiobjective optimization problem (MOP). However, there is usually not a single DM but two DMs, i.e., an efficiency DM and a safety DM, and the DMs are only concerned with their respective objectives. The final decision is made based on the solutions of both DMs. In this paper, for the first time, biparty multiobjective UAV path planning (BPMO-UAVPP) problems involving both efficiency and safety departments are modeled. The existing multiobjective immune algorithm with nondominated neighbor-based selection (NNIA), the hybrid evolutionary framework for the multiobjective immune algorithm (HEIA), and the adaptive immune-inspired multiobjective algorithm (AIMA) are modified for solving the BPMO-UAVPP problem, and then biparty multiobjective optimization algorithms, including the BPNNIA, BPHEIA, and BPAIMA, are proposed and comprehensively compared with traditional multiobjective evolutionary algorithms and typical multiparty multiobjective evolutionary algorithms (i.e., OptMPNDS and OptMPNDS2). The experimental results show that BPAIMA performs better than ordinary multiobjective evolutionary algorithms such as NSGA-II and multiparty multiobjective evolutionary algorithms such as OptMPNDS, OptMPNDS2, BPNNIA and BPHEIA.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.