一般的内自等式,特别是单义范畴的内自等式

Pub Date : 2024-05-17 DOI:10.1016/j.jpaa.2024.107717
Pieter Hofstra , Martti Karvonen
{"title":"一般的内自等式,特别是单义范畴的内自等式","authors":"Pieter Hofstra ,&nbsp;Martti Karvonen","doi":"10.1016/j.jpaa.2024.107717","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a general theory of (extended) inner autoequivalences of objects of any 2-category, generalizing the theory of isotropy groups to the 2-categorical setting. We show how dense subcategories let one compute isotropy in the presence of binary coproducts, unifying various known one-dimensional results and providing tractable computational tools in the two-dimensional setting. In particular, we show that the isotropy 2-group of a monoidal category coincides with its <em>Picard</em> 2<em>-group</em>, i.e., the 2-group on its weakly invertible objects.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022404924001142/pdfft?md5=fefd005f074cdc8059ba284878a85a38&pid=1-s2.0-S0022404924001142-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Inner autoequivalences in general and those of monoidal categories in particular\",\"authors\":\"Pieter Hofstra ,&nbsp;Martti Karvonen\",\"doi\":\"10.1016/j.jpaa.2024.107717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We develop a general theory of (extended) inner autoequivalences of objects of any 2-category, generalizing the theory of isotropy groups to the 2-categorical setting. We show how dense subcategories let one compute isotropy in the presence of binary coproducts, unifying various known one-dimensional results and providing tractable computational tools in the two-dimensional setting. In particular, we show that the isotropy 2-group of a monoidal category coincides with its <em>Picard</em> 2<em>-group</em>, i.e., the 2-group on its weakly invertible objects.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001142/pdfft?md5=fefd005f074cdc8059ba284878a85a38&pid=1-s2.0-S0022404924001142-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们发展了关于任何二维范畴对象的(扩展)内自等价性的一般理论,将各向同性群理论推广到二维范畴中。我们展示了密集子类如何让我们在二元共积的情况下计算各向同性,统一了各种已知的一维结果,并在二维环境中提供了可操作的计算工具。特别是,我们证明了一元范畴的各向同性 2 群与其皮卡尔 2 群重合,即其弱可逆对象上的 2 群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Inner autoequivalences in general and those of monoidal categories in particular

We develop a general theory of (extended) inner autoequivalences of objects of any 2-category, generalizing the theory of isotropy groups to the 2-categorical setting. We show how dense subcategories let one compute isotropy in the presence of binary coproducts, unifying various known one-dimensional results and providing tractable computational tools in the two-dimensional setting. In particular, we show that the isotropy 2-group of a monoidal category coincides with its Picard 2-group, i.e., the 2-group on its weakly invertible objects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信