{"title":"多样化多路复用网络模型中的稀疏子空间聚类","authors":"Majid Noroozi , Marianna Pensky","doi":"10.1016/j.jmva.2024.105333","DOIUrl":null,"url":null,"abstract":"<div><p>The paper considers the DIverse MultiPLEx (DIMPLE) network model, where all layers of the network have the same collection of nodes and are equipped with the Stochastic Block Models. In addition, all layers can be partitioned into groups with the same community structures, although the layers in the same group may have different matrices of block connection probabilities. To the best of our knowledge, the DIMPLE model, introduced in Pensky and Wang (2021), presents the most broad SBM-equipped binary multilayer network model on the same set of nodes and, thus, generalizes a multitude of papers that study more restrictive settings. Under the DIMPLE model, the main task is to identify the groups of layers with the same community structures since the matrices of block connection probabilities act as nuisance parameters under the DIMPLE paradigm. The main contribution of the paper is achieving the strongly consistent between-layer clustering by using Sparse Subspace Clustering (SSC), the well-developed technique in computer vision. In addition, SSC allows to handle much larger networks than spectral clustering, and is perfectly suitable for application of parallel computing. Moreover, our paper is the first one to obtain precision guarantees for SSC when it is applied to binary data.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"203 ","pages":"Article 105333"},"PeriodicalIF":1.4000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse subspace clustering in diverse multiplex network model\",\"authors\":\"Majid Noroozi , Marianna Pensky\",\"doi\":\"10.1016/j.jmva.2024.105333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper considers the DIverse MultiPLEx (DIMPLE) network model, where all layers of the network have the same collection of nodes and are equipped with the Stochastic Block Models. In addition, all layers can be partitioned into groups with the same community structures, although the layers in the same group may have different matrices of block connection probabilities. To the best of our knowledge, the DIMPLE model, introduced in Pensky and Wang (2021), presents the most broad SBM-equipped binary multilayer network model on the same set of nodes and, thus, generalizes a multitude of papers that study more restrictive settings. Under the DIMPLE model, the main task is to identify the groups of layers with the same community structures since the matrices of block connection probabilities act as nuisance parameters under the DIMPLE paradigm. The main contribution of the paper is achieving the strongly consistent between-layer clustering by using Sparse Subspace Clustering (SSC), the well-developed technique in computer vision. In addition, SSC allows to handle much larger networks than spectral clustering, and is perfectly suitable for application of parallel computing. Moreover, our paper is the first one to obtain precision guarantees for SSC when it is applied to binary data.</p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"203 \",\"pages\":\"Article 105333\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X2400040X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X2400040X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Sparse subspace clustering in diverse multiplex network model
The paper considers the DIverse MultiPLEx (DIMPLE) network model, where all layers of the network have the same collection of nodes and are equipped with the Stochastic Block Models. In addition, all layers can be partitioned into groups with the same community structures, although the layers in the same group may have different matrices of block connection probabilities. To the best of our knowledge, the DIMPLE model, introduced in Pensky and Wang (2021), presents the most broad SBM-equipped binary multilayer network model on the same set of nodes and, thus, generalizes a multitude of papers that study more restrictive settings. Under the DIMPLE model, the main task is to identify the groups of layers with the same community structures since the matrices of block connection probabilities act as nuisance parameters under the DIMPLE paradigm. The main contribution of the paper is achieving the strongly consistent between-layer clustering by using Sparse Subspace Clustering (SSC), the well-developed technique in computer vision. In addition, SSC allows to handle much larger networks than spectral clustering, and is perfectly suitable for application of parallel computing. Moreover, our paper is the first one to obtain precision guarantees for SSC when it is applied to binary data.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.