{"title":"调整激光功率,控制纳米粒子在患者细胞部位产生的热量。","authors":"Seyed Ehsan Razavi, Hamed Khodadadi, Masoud Goharimanesh","doi":"10.1049/syb2.12093","DOIUrl":null,"url":null,"abstract":"<p>Cancer treatment often involves heat therapy, commonly administered alongside chemotherapy and radiation therapy. The authors address the challenges posed by heat treatment methods and introduce effective control techniques. These approaches enable the precise adjustment of laser radiation over time, ensuring the tumour's core temperature attains an acceptable level with a well-defined transient response. In these control strategies, the input is the actual tumour temperature compared to the desired value, while the output governs laser radiation power. Efficient control methods are explored for regulating tumour temperature in the presence of nanoparticles and laser radiation, validated through simulations on a relevant physiological model. Initially, a Proportional-Integral-Derivative (PID) controller serves as the foundational compensator. The PID controller parameters are optimised using a combination of trial and error and the Imperialist Competitive Algorithm (ICA). ICA, known for its swift convergence and reduced computational complexity, proves instrumental in parameter determination. Furthermore, an intelligent controller based on an artificial neural network is integrated with the PID controller and compared against alternative methods. Simulation results underscore the efficacy of the combined neural network-PID controller in achieving precise temperature control. This comprehensive study illuminates promising avenues for enhancing heat therapy's effectiveness in cancer treatment.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"18 4","pages":"119-128"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12093","citationCount":"0","resultStr":"{\"title\":\"Adjusting laser power to control the heat generated by nanoparticles at the site of a patient's cells\",\"authors\":\"Seyed Ehsan Razavi, Hamed Khodadadi, Masoud Goharimanesh\",\"doi\":\"10.1049/syb2.12093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cancer treatment often involves heat therapy, commonly administered alongside chemotherapy and radiation therapy. The authors address the challenges posed by heat treatment methods and introduce effective control techniques. These approaches enable the precise adjustment of laser radiation over time, ensuring the tumour's core temperature attains an acceptable level with a well-defined transient response. In these control strategies, the input is the actual tumour temperature compared to the desired value, while the output governs laser radiation power. Efficient control methods are explored for regulating tumour temperature in the presence of nanoparticles and laser radiation, validated through simulations on a relevant physiological model. Initially, a Proportional-Integral-Derivative (PID) controller serves as the foundational compensator. The PID controller parameters are optimised using a combination of trial and error and the Imperialist Competitive Algorithm (ICA). ICA, known for its swift convergence and reduced computational complexity, proves instrumental in parameter determination. Furthermore, an intelligent controller based on an artificial neural network is integrated with the PID controller and compared against alternative methods. Simulation results underscore the efficacy of the combined neural network-PID controller in achieving precise temperature control. This comprehensive study illuminates promising avenues for enhancing heat therapy's effectiveness in cancer treatment.</p>\",\"PeriodicalId\":50379,\"journal\":{\"name\":\"IET Systems Biology\",\"volume\":\"18 4\",\"pages\":\"119-128\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.12093\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Systems Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12093\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12093","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Adjusting laser power to control the heat generated by nanoparticles at the site of a patient's cells
Cancer treatment often involves heat therapy, commonly administered alongside chemotherapy and radiation therapy. The authors address the challenges posed by heat treatment methods and introduce effective control techniques. These approaches enable the precise adjustment of laser radiation over time, ensuring the tumour's core temperature attains an acceptable level with a well-defined transient response. In these control strategies, the input is the actual tumour temperature compared to the desired value, while the output governs laser radiation power. Efficient control methods are explored for regulating tumour temperature in the presence of nanoparticles and laser radiation, validated through simulations on a relevant physiological model. Initially, a Proportional-Integral-Derivative (PID) controller serves as the foundational compensator. The PID controller parameters are optimised using a combination of trial and error and the Imperialist Competitive Algorithm (ICA). ICA, known for its swift convergence and reduced computational complexity, proves instrumental in parameter determination. Furthermore, an intelligent controller based on an artificial neural network is integrated with the PID controller and compared against alternative methods. Simulation results underscore the efficacy of the combined neural network-PID controller in achieving precise temperature control. This comprehensive study illuminates promising avenues for enhancing heat therapy's effectiveness in cancer treatment.
期刊介绍:
IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells.
The scope includes the following topics:
Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.