J. Stuart Grossert, Andrew M. J. Crowell, Donatella Boschi, Marco L. Lolli, Robert L. White
{"title":"同源 3-hydroxyfurazan 和 Nitrile 氨基酸的串联质谱分析:协同作用和碎裂过程分析。","authors":"J. Stuart Grossert, Andrew M. J. Crowell, Donatella Boschi, Marco L. Lolli, Robert L. White","doi":"10.1002/jms.5043","DOIUrl":null,"url":null,"abstract":"<p>The assignment of structure by tandem mass spectrometry (MS/MS) relies on the interpretation of the fragmentation behavior of gas-phase ions. Mass spectra were acquired for a series of heterocyclic mimetics of acidic amino acids and a related series of nitrile amino acids. All amino acids were readily protonated or deprotonated by electrospray ionization (ESI), and distinctive fragmentation processes were observed when the ions were subjected to collision-induced dissociation (CID). The deprotonated heterocycles showed bond cleavages of the 3-hydroxyfurazan ring with formation of oxoisocyanate and the complementary deprotonated nitrile amino acid. Further fragmentation of the deprotonated nitrile amino acids was greatly dependent on the length of the alkyl nitrile side chain. Competing losses of CO<sub>2</sub> versus HCN occurred from α-cyanoglycinate (shortest chain), whereas water was lost from 2-amino-5-cyanopentanoate (longest chain). Interestingly, loss of acrylonitrile by a McLafferty-type fragmentation process was detected for 2-amino-4-cyanobutanoate, and several competing processes were observed for β-cyanoalanate. In one process, cyanide ion was formed either by consecutive losses of ammonia, carbon dioxide, and acetylene or by a one-step decarboxylative elimination. In another, complementary ions were obtained from β-cyanoalanate by loss of acetonitrile or HN=CHCO<sub>2</sub>H. Fragmentation of the protonated 3-hydroxyfurazan and nitrile amino acids resulted in the cumulative loss (H<sub>2</sub>O + CO), a loss that is commonly observed for protonated aliphatic α-amino acids. Overall, the distinct fragmentation behavior of the multifunctional 3-hydroxyfurazan amino acids correlated with the charged site, whereas fragmentations of the deprotonated nitrile amino acids showed cooperative interactions between the nitrile and the carboxylate groups.</p>","PeriodicalId":16178,"journal":{"name":"Journal of Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jms.5043","citationCount":"0","resultStr":"{\"title\":\"Tandem mass spectrometry of homologous 3-hydroxyfurazan and nitrile amino acids: Analysis of cooperative interactions and fragmentation processes\",\"authors\":\"J. Stuart Grossert, Andrew M. J. Crowell, Donatella Boschi, Marco L. Lolli, Robert L. White\",\"doi\":\"10.1002/jms.5043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The assignment of structure by tandem mass spectrometry (MS/MS) relies on the interpretation of the fragmentation behavior of gas-phase ions. Mass spectra were acquired for a series of heterocyclic mimetics of acidic amino acids and a related series of nitrile amino acids. All amino acids were readily protonated or deprotonated by electrospray ionization (ESI), and distinctive fragmentation processes were observed when the ions were subjected to collision-induced dissociation (CID). The deprotonated heterocycles showed bond cleavages of the 3-hydroxyfurazan ring with formation of oxoisocyanate and the complementary deprotonated nitrile amino acid. Further fragmentation of the deprotonated nitrile amino acids was greatly dependent on the length of the alkyl nitrile side chain. Competing losses of CO<sub>2</sub> versus HCN occurred from α-cyanoglycinate (shortest chain), whereas water was lost from 2-amino-5-cyanopentanoate (longest chain). Interestingly, loss of acrylonitrile by a McLafferty-type fragmentation process was detected for 2-amino-4-cyanobutanoate, and several competing processes were observed for β-cyanoalanate. In one process, cyanide ion was formed either by consecutive losses of ammonia, carbon dioxide, and acetylene or by a one-step decarboxylative elimination. In another, complementary ions were obtained from β-cyanoalanate by loss of acetonitrile or HN=CHCO<sub>2</sub>H. Fragmentation of the protonated 3-hydroxyfurazan and nitrile amino acids resulted in the cumulative loss (H<sub>2</sub>O + CO), a loss that is commonly observed for protonated aliphatic α-amino acids. Overall, the distinct fragmentation behavior of the multifunctional 3-hydroxyfurazan amino acids correlated with the charged site, whereas fragmentations of the deprotonated nitrile amino acids showed cooperative interactions between the nitrile and the carboxylate groups.</p>\",\"PeriodicalId\":16178,\"journal\":{\"name\":\"Journal of Mass Spectrometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jms.5043\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mass Spectrometry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jms.5043\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mass Spectrometry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jms.5043","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Tandem mass spectrometry of homologous 3-hydroxyfurazan and nitrile amino acids: Analysis of cooperative interactions and fragmentation processes
The assignment of structure by tandem mass spectrometry (MS/MS) relies on the interpretation of the fragmentation behavior of gas-phase ions. Mass spectra were acquired for a series of heterocyclic mimetics of acidic amino acids and a related series of nitrile amino acids. All amino acids were readily protonated or deprotonated by electrospray ionization (ESI), and distinctive fragmentation processes were observed when the ions were subjected to collision-induced dissociation (CID). The deprotonated heterocycles showed bond cleavages of the 3-hydroxyfurazan ring with formation of oxoisocyanate and the complementary deprotonated nitrile amino acid. Further fragmentation of the deprotonated nitrile amino acids was greatly dependent on the length of the alkyl nitrile side chain. Competing losses of CO2 versus HCN occurred from α-cyanoglycinate (shortest chain), whereas water was lost from 2-amino-5-cyanopentanoate (longest chain). Interestingly, loss of acrylonitrile by a McLafferty-type fragmentation process was detected for 2-amino-4-cyanobutanoate, and several competing processes were observed for β-cyanoalanate. In one process, cyanide ion was formed either by consecutive losses of ammonia, carbon dioxide, and acetylene or by a one-step decarboxylative elimination. In another, complementary ions were obtained from β-cyanoalanate by loss of acetonitrile or HN=CHCO2H. Fragmentation of the protonated 3-hydroxyfurazan and nitrile amino acids resulted in the cumulative loss (H2O + CO), a loss that is commonly observed for protonated aliphatic α-amino acids. Overall, the distinct fragmentation behavior of the multifunctional 3-hydroxyfurazan amino acids correlated with the charged site, whereas fragmentations of the deprotonated nitrile amino acids showed cooperative interactions between the nitrile and the carboxylate groups.
期刊介绍:
The Journal of Mass Spectrometry publishes papers on a broad range of topics of interest to scientists working in both fundamental and applied areas involving the study of gaseous ions.
The aim of JMS is to serve the scientific community with information provided and arranged to help senior investigators to better stay abreast of new discoveries and studies in their own field, to make them aware of events and developments in associated fields, and to provide students and newcomers the basic tools with which to learn fundamental and applied aspects of mass spectrometry.