MSGD:人工编辑的多发性硬化症基因组、转录组、蛋白质组和药物信息数据库。

IF 3.4 4区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Tao Wu, Yaopan Hou, Guanghao Xin, Jingyan Niu, Shanshan Peng, Fanfan Xu, Ying Li, Yuling Chen, Yifangfei Yu, Huixue Zhang, Xiaotong Kong, Yuze Cao, Shangwei Ning, Lihua Wang, Junwei Hao
{"title":"MSGD:人工编辑的多发性硬化症基因组、转录组、蛋白质组和药物信息数据库。","authors":"Tao Wu, Yaopan Hou, Guanghao Xin, Jingyan Niu, Shanshan Peng, Fanfan Xu, Ying Li, Yuling Chen, Yifangfei Yu, Huixue Zhang, Xiaotong Kong, Yuze Cao, Shangwei Ning, Lihua Wang, Junwei Hao","doi":"10.1093/database/baae037","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple sclerosis (MS) is the most common inflammatory demyelinating disease of the central nervous system. 'Omics' technologies (genomics, transcriptomics, proteomics) and associated drug information have begun reshaping our understanding of multiple sclerosis. However, these data are scattered across numerous references, making them challenging to fully utilize. We manually mined and compiled these data within the Multiple Sclerosis Gene Database (MSGD) database, intending to continue updating it in the future. We screened 5485 publications and constructed the current version of MSGD. MSGD comprises 6255 entries, including 3274 variant entries, 1175 RNA entries, 418 protein entries, 313 knockout entries, 612 drug entries and 463 high-throughput entries. Each entry contains detailed information, such as species, disease type, detailed gene descriptions (such as official gene symbols), and original references. MSGD is freely accessible and provides a user-friendly web interface. Users can easily search for genes of interest, view their expression patterns and detailed information, manage gene sets and submit new MS-gene associations through the platform. The primary principle behind MSGD's design is to provide an exploratory platform, aiming to minimize filtration and interpretation barriers while ensuring highly accessible presentation of data. This initiative is expected to significantly assist researchers in deciphering gene mechanisms and improving the prevention, diagnosis and treatment of MS. Database URL: http://bio-bigdata.hrbmu.edu.cn/MSGD.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2024 ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126313/pdf/","citationCount":"0","resultStr":"{\"title\":\"MSGD: a manually curated database of genomic, transcriptomic, proteomic and drug information for multiple sclerosis.\",\"authors\":\"Tao Wu, Yaopan Hou, Guanghao Xin, Jingyan Niu, Shanshan Peng, Fanfan Xu, Ying Li, Yuling Chen, Yifangfei Yu, Huixue Zhang, Xiaotong Kong, Yuze Cao, Shangwei Ning, Lihua Wang, Junwei Hao\",\"doi\":\"10.1093/database/baae037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple sclerosis (MS) is the most common inflammatory demyelinating disease of the central nervous system. 'Omics' technologies (genomics, transcriptomics, proteomics) and associated drug information have begun reshaping our understanding of multiple sclerosis. However, these data are scattered across numerous references, making them challenging to fully utilize. We manually mined and compiled these data within the Multiple Sclerosis Gene Database (MSGD) database, intending to continue updating it in the future. We screened 5485 publications and constructed the current version of MSGD. MSGD comprises 6255 entries, including 3274 variant entries, 1175 RNA entries, 418 protein entries, 313 knockout entries, 612 drug entries and 463 high-throughput entries. Each entry contains detailed information, such as species, disease type, detailed gene descriptions (such as official gene symbols), and original references. MSGD is freely accessible and provides a user-friendly web interface. Users can easily search for genes of interest, view their expression patterns and detailed information, manage gene sets and submit new MS-gene associations through the platform. The primary principle behind MSGD's design is to provide an exploratory platform, aiming to minimize filtration and interpretation barriers while ensuring highly accessible presentation of data. This initiative is expected to significantly assist researchers in deciphering gene mechanisms and improving the prevention, diagnosis and treatment of MS. Database URL: http://bio-bigdata.hrbmu.edu.cn/MSGD.</p>\",\"PeriodicalId\":10923,\"journal\":{\"name\":\"Database: The Journal of Biological Databases and Curation\",\"volume\":\"2024 \",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126313/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Database: The Journal of Biological Databases and Curation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/database/baae037\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database: The Journal of Biological Databases and Curation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baae037","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多发性硬化症(MS)是中枢神经系统最常见的炎症性脱髓鞘疾病。Omics "技术(基因组学、转录组学、蛋白质组学)和相关药物信息已开始重塑我们对多发性硬化症的认识。然而,这些数据分散在众多参考文献中,因此要充分利用它们具有挑战性。我们在多发性硬化基因数据库(MSGD)数据库中人工挖掘并编译了这些数据,并打算在未来继续更新。我们筛选了 5485 篇文献,构建了当前版本的 MSGD。MSGD 共有 6255 个条目,包括 3274 个变异条目、1175 个 RNA 条目、418 个蛋白质条目、313 个基因敲除条目、612 个药物条目和 463 个高通量条目。每个条目都包含详细信息,如物种、疾病类型、详细的基因描述(如官方基因符号)和原始参考文献。MSGD 可免费访问,并提供用户友好的网络界面。用户可以通过该平台轻松搜索感兴趣的基因,查看其表达模式和详细信息,管理基因集,并提交新的 MS 基因关联。MSGD 设计的主要原则是提供一个探索性平台,旨在最大限度地减少过滤和解释障碍,同时确保数据的高度可访问性。这一举措有望极大地帮助研究人员破译基因机制,改善多发性硬化症的预防、诊断和治疗。数据库网址:http://bio-bigdata.hrbmu.edu.cn/MSGD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MSGD: a manually curated database of genomic, transcriptomic, proteomic and drug information for multiple sclerosis.

Multiple sclerosis (MS) is the most common inflammatory demyelinating disease of the central nervous system. 'Omics' technologies (genomics, transcriptomics, proteomics) and associated drug information have begun reshaping our understanding of multiple sclerosis. However, these data are scattered across numerous references, making them challenging to fully utilize. We manually mined and compiled these data within the Multiple Sclerosis Gene Database (MSGD) database, intending to continue updating it in the future. We screened 5485 publications and constructed the current version of MSGD. MSGD comprises 6255 entries, including 3274 variant entries, 1175 RNA entries, 418 protein entries, 313 knockout entries, 612 drug entries and 463 high-throughput entries. Each entry contains detailed information, such as species, disease type, detailed gene descriptions (such as official gene symbols), and original references. MSGD is freely accessible and provides a user-friendly web interface. Users can easily search for genes of interest, view their expression patterns and detailed information, manage gene sets and submit new MS-gene associations through the platform. The primary principle behind MSGD's design is to provide an exploratory platform, aiming to minimize filtration and interpretation barriers while ensuring highly accessible presentation of data. This initiative is expected to significantly assist researchers in deciphering gene mechanisms and improving the prevention, diagnosis and treatment of MS. Database URL: http://bio-bigdata.hrbmu.edu.cn/MSGD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Database: The Journal of Biological Databases and Curation
Database: The Journal of Biological Databases and Curation MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
9.00
自引率
3.40%
发文量
100
审稿时长
>12 weeks
期刊介绍: Huge volumes of primary data are archived in numerous open-access databases, and with new generation technologies becoming more common in laboratories, large datasets will become even more prevalent. The archiving, curation, analysis and interpretation of all of these data are a challenge. Database development and biocuration are at the forefront of the endeavor to make sense of this mounting deluge of data. Database: The Journal of Biological Databases and Curation provides an open access platform for the presentation of novel ideas in database research and biocuration, and aims to help strengthen the bridge between database developers, curators, and users.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信