{"title":"分数布朗运动驱动的高维矩阵过程的特征值分布","authors":"Jian Song, Jianfeng Yao, Wangjun Yuan","doi":"10.1142/s2010326324500096","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study high-dimensional behavior of empirical spectral distributions <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>t</mi><mo>∈</mo><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">}</mo></math></span><span></span> for a class of <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi><mo stretchy=\"false\">×</mo><mi>N</mi></math></span><span></span> symmetric/Hermitian random matrices, whose entries are generated from the solution of stochastic differential equation driven by fractional Brownian motion with Hurst parameter <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>H</mi><mo>∈</mo><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">/</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span>. For Wigner-type matrices, we obtain almost sure relative compactness of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mo stretchy=\"false\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>t</mi><mo>∈</mo><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">}</mo></mrow><mrow><mi>N</mi><mo>∈</mo><mi>ℕ</mi></mrow></msub></math></span><span></span> in <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\"false\">]</mo><mo>,</mo><mstyle mathvariant=\"bold\"><mi>P</mi></mstyle><mo stretchy=\"false\">(</mo><mi>ℝ</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span> following the approach in [1]; for Wishart-type matrices, we obtain tightness of <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mo stretchy=\"false\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>t</mi><mo>∈</mo><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">}</mo></mrow><mrow><mi>N</mi><mo>∈</mo><mi>ℕ</mi></mrow></msub></math></span><span></span> on <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\"false\">]</mo><mo>,</mo><mstyle mathvariant=\"bold\"><mi>P</mi></mstyle><mo stretchy=\"false\">(</mo><mi>ℝ</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span> by tightness criterions provided in Appendix B. The limit of <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>t</mi><mo>∈</mo><mo stretchy=\"false\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\"false\">]</mo><mo stretchy=\"false\">}</mo></math></span><span></span> as <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi><mo>→</mo><mi>∞</mi></math></span><span></span> is also characterized.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eigenvalue distributions of high-dimensional matrix processes driven by fractional Brownian motion\",\"authors\":\"Jian Song, Jianfeng Yao, Wangjun Yuan\",\"doi\":\"10.1142/s2010326324500096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study high-dimensional behavior of empirical spectral distributions <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>t</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo><mi>t</mi><mo>∈</mo><mo stretchy=\\\"false\\\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\\\"false\\\">]</mo><mo stretchy=\\\"false\\\">}</mo></math></span><span></span> for a class of <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>N</mi><mo stretchy=\\\"false\\\">×</mo><mi>N</mi></math></span><span></span> symmetric/Hermitian random matrices, whose entries are generated from the solution of stochastic differential equation driven by fractional Brownian motion with Hurst parameter <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>H</mi><mo>∈</mo><mo stretchy=\\\"false\\\">(</mo><mn>1</mn><mo stretchy=\\\"false\\\">/</mo><mn>2</mn><mo>,</mo><mn>1</mn><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. For Wigner-type matrices, we obtain almost sure relative compactness of <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mo stretchy=\\\"false\\\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>t</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo><mi>t</mi><mo>∈</mo><mo stretchy=\\\"false\\\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\\\"false\\\">]</mo><mo stretchy=\\\"false\\\">}</mo></mrow><mrow><mi>N</mi><mo>∈</mo><mi>ℕ</mi></mrow></msub></math></span><span></span> in <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi><mo stretchy=\\\"false\\\">(</mo><mo stretchy=\\\"false\\\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\\\"false\\\">]</mo><mo>,</mo><mstyle mathvariant=\\\"bold\\\"><mi>P</mi></mstyle><mo stretchy=\\\"false\\\">(</mo><mi>ℝ</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> following the approach in [1]; for Wishart-type matrices, we obtain tightness of <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mo stretchy=\\\"false\\\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>t</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo><mi>t</mi><mo>∈</mo><mo stretchy=\\\"false\\\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\\\"false\\\">]</mo><mo stretchy=\\\"false\\\">}</mo></mrow><mrow><mi>N</mi><mo>∈</mo><mi>ℕ</mi></mrow></msub></math></span><span></span> on <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi><mo stretchy=\\\"false\\\">(</mo><mo stretchy=\\\"false\\\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\\\"false\\\">]</mo><mo>,</mo><mstyle mathvariant=\\\"bold\\\"><mi>P</mi></mstyle><mo stretchy=\\\"false\\\">(</mo><mi>ℝ</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> by tightness criterions provided in Appendix B. The limit of <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">{</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>N</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>t</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo><mi>t</mi><mo>∈</mo><mo stretchy=\\\"false\\\">[</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo stretchy=\\\"false\\\">]</mo><mo stretchy=\\\"false\\\">}</mo></math></span><span></span> as <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>N</mi><mo>→</mo><mi>∞</mi></math></span><span></span> is also characterized.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326324500096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326324500096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Eigenvalue distributions of high-dimensional matrix processes driven by fractional Brownian motion
In this paper, we study high-dimensional behavior of empirical spectral distributions for a class of symmetric/Hermitian random matrices, whose entries are generated from the solution of stochastic differential equation driven by fractional Brownian motion with Hurst parameter . For Wigner-type matrices, we obtain almost sure relative compactness of in following the approach in [1]; for Wishart-type matrices, we obtain tightness of on by tightness criterions provided in Appendix B. The limit of as is also characterized.