{"title":"Bagley-Torvik 和 Langevin 型微分方程","authors":"J. R. L. Webb, Kunquan Lan","doi":"10.1007/s13540-024-00292-2","DOIUrl":null,"url":null,"abstract":"<p>Nonlinear fractional equations for Caputo differential operators with two fractional orders are studied. One case is a generalization of the Bagley-Torvik equation, another is of Langevin type. These can be confused as being the same but because fractional derivatives do not commute these are different problems. However it is possible to use some common methodology. Some new regularity results for fractional integrals of a certain type are proved. These are used to rigorously prove equivalences between solutions of initial value problems for the fractional derivative equations and solutions of the corresponding integral equations in the space of continuous functions. A novelty is that it is not assumed that the nonlinear term is continuous but that it satisfies the weaker <span>\\(L^{p}\\)</span>-Carathéodory condition. Existence of solutions on an interval [0, <i>T</i>] in cases where <i>T</i> can be arbitrarily large, so-called global solutions, are proved, obtaining the necessary <i>a priori</i> bounds by using recent fractional Gronwall and fractional Bihari inequalities.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional differential equations of Bagley-Torvik and Langevin type\",\"authors\":\"J. R. L. Webb, Kunquan Lan\",\"doi\":\"10.1007/s13540-024-00292-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nonlinear fractional equations for Caputo differential operators with two fractional orders are studied. One case is a generalization of the Bagley-Torvik equation, another is of Langevin type. These can be confused as being the same but because fractional derivatives do not commute these are different problems. However it is possible to use some common methodology. Some new regularity results for fractional integrals of a certain type are proved. These are used to rigorously prove equivalences between solutions of initial value problems for the fractional derivative equations and solutions of the corresponding integral equations in the space of continuous functions. A novelty is that it is not assumed that the nonlinear term is continuous but that it satisfies the weaker <span>\\\\(L^{p}\\\\)</span>-Carathéodory condition. Existence of solutions on an interval [0, <i>T</i>] in cases where <i>T</i> can be arbitrarily large, so-called global solutions, are proved, obtaining the necessary <i>a priori</i> bounds by using recent fractional Gronwall and fractional Bihari inequalities.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00292-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00292-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Fractional differential equations of Bagley-Torvik and Langevin type
Nonlinear fractional equations for Caputo differential operators with two fractional orders are studied. One case is a generalization of the Bagley-Torvik equation, another is of Langevin type. These can be confused as being the same but because fractional derivatives do not commute these are different problems. However it is possible to use some common methodology. Some new regularity results for fractional integrals of a certain type are proved. These are used to rigorously prove equivalences between solutions of initial value problems for the fractional derivative equations and solutions of the corresponding integral equations in the space of continuous functions. A novelty is that it is not assumed that the nonlinear term is continuous but that it satisfies the weaker \(L^{p}\)-Carathéodory condition. Existence of solutions on an interval [0, T] in cases where T can be arbitrarily large, so-called global solutions, are proved, obtaining the necessary a priori bounds by using recent fractional Gronwall and fractional Bihari inequalities.