{"title":"在 R2 引力下诱发指数膨胀的虫洞","authors":"B Modak, Gargi Biswas","doi":"10.1142/s0219887824502013","DOIUrl":null,"url":null,"abstract":"<p>Wormholes are considered both from the Wheeler deWitt equation, as well as from the field equations in the Euclidean background of Robertson Walker mini-superspace in <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span> gravity. Quantum wormhole satisfies Hawking Page wormhole boundary condition in the Euclidean background of mini-superspace, however, in the Lorentzian background wave functional turns to the usual oscillatory function. The Euclidean field equations for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>κ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo stretchy=\"false\">±</mo><mn>1</mn></math></span><span></span> lead to the wormhole configuration, as well as oscillating universe in Euclidean time <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>τ</mi></math></span><span></span>. The oscillating universe in Euclidean time <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>τ</mi></math></span><span></span> transforms to an expanding universe only for <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>κ</mi><mo>=</mo><mn>1</mn></math></span><span></span> in Lorentz time <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span> under analytic continuation <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>τ</mi><mo>=</mo><mi>i</mi><mi>t</mi></math></span><span></span> and asymptotically leads to an exponential solution. An Euclidean wormhole in the very early era evolves to an oscillating universe in <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>τ</mi></math></span><span></span>, thereafter crossing deSitter radius transition to an inflationary era is evident at later epoch only for <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>κ</mi><mo>=</mo><mn>1</mn></math></span><span></span>.</p>","PeriodicalId":50320,"journal":{"name":"International Journal of Geometric Methods in Modern Physics","volume":"47 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wormhole inducing exponential expansion in R2 gravity\",\"authors\":\"B Modak, Gargi Biswas\",\"doi\":\"10.1142/s0219887824502013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wormholes are considered both from the Wheeler deWitt equation, as well as from the field equations in the Euclidean background of Robertson Walker mini-superspace in <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span> gravity. Quantum wormhole satisfies Hawking Page wormhole boundary condition in the Euclidean background of mini-superspace, however, in the Lorentzian background wave functional turns to the usual oscillatory function. The Euclidean field equations for <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>κ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo stretchy=\\\"false\\\">±</mo><mn>1</mn></math></span><span></span> lead to the wormhole configuration, as well as oscillating universe in Euclidean time <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>τ</mi></math></span><span></span>. The oscillating universe in Euclidean time <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>τ</mi></math></span><span></span> transforms to an expanding universe only for <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>κ</mi><mo>=</mo><mn>1</mn></math></span><span></span> in Lorentz time <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>t</mi></math></span><span></span> under analytic continuation <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>τ</mi><mo>=</mo><mi>i</mi><mi>t</mi></math></span><span></span> and asymptotically leads to an exponential solution. An Euclidean wormhole in the very early era evolves to an oscillating universe in <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>τ</mi></math></span><span></span>, thereafter crossing deSitter radius transition to an inflationary era is evident at later epoch only for <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>κ</mi><mo>=</mo><mn>1</mn></math></span><span></span>.</p>\",\"PeriodicalId\":50320,\"journal\":{\"name\":\"International Journal of Geometric Methods in Modern Physics\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geometric Methods in Modern Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219887824502013\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geometric Methods in Modern Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0219887824502013","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Wormhole inducing exponential expansion in R2 gravity
Wormholes are considered both from the Wheeler deWitt equation, as well as from the field equations in the Euclidean background of Robertson Walker mini-superspace in gravity. Quantum wormhole satisfies Hawking Page wormhole boundary condition in the Euclidean background of mini-superspace, however, in the Lorentzian background wave functional turns to the usual oscillatory function. The Euclidean field equations for lead to the wormhole configuration, as well as oscillating universe in Euclidean time . The oscillating universe in Euclidean time transforms to an expanding universe only for in Lorentz time under analytic continuation and asymptotically leads to an exponential solution. An Euclidean wormhole in the very early era evolves to an oscillating universe in , thereafter crossing deSitter radius transition to an inflationary era is evident at later epoch only for .
期刊介绍:
This journal publishes short communications, research and review articles devoted to all applications of geometric methods (including commutative and non-commutative Differential Geometry, Riemannian Geometry, Finsler Geometry, Complex Geometry, Lie Groups and Lie Algebras, Bundle Theory, Homology an Cohomology, Algebraic Geometry, Global Analysis, Category Theory, Operator Algebra and Topology) in all fields of Mathematical and Theoretical Physics, including in particular: Classical Mechanics (Lagrangian, Hamiltonian, Poisson formulations); Quantum Mechanics (also semi-classical approximations); Hamiltonian Systems of ODE''s and PDE''s and Integrability; Variational Structures of Physics and Conservation Laws; Thermodynamics of Systems and Continua (also Quantum Thermodynamics and Statistical Physics); General Relativity and other Geometric Theories of Gravitation; geometric models for Particle Physics; Supergravity and Supersymmetric Field Theories; Classical and Quantum Field Theory (also quantization over curved backgrounds); Gauge Theories; Topological Field Theories; Strings, Branes and Extended Objects Theory; Holography; Quantum Gravity, Loop Quantum Gravity and Quantum Cosmology; applications of Quantum Groups; Quantum Computation; Control Theory; Geometry of Chaos.