在 R2 引力下诱发指数膨胀的虫洞

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
B Modak, Gargi Biswas
{"title":"在 R2 引力下诱发指数膨胀的虫洞","authors":"B Modak, Gargi Biswas","doi":"10.1142/s0219887824502013","DOIUrl":null,"url":null,"abstract":"<p>Wormholes are considered both from the Wheeler deWitt equation, as well as from the field equations in the Euclidean background of Robertson Walker mini-superspace in <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span> gravity. Quantum wormhole satisfies Hawking Page wormhole boundary condition in the Euclidean background of mini-superspace, however, in the Lorentzian background wave functional turns to the usual oscillatory function. The Euclidean field equations for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>κ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo stretchy=\"false\">±</mo><mn>1</mn></math></span><span></span> lead to the wormhole configuration, as well as oscillating universe in Euclidean time <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>τ</mi></math></span><span></span>. The oscillating universe in Euclidean time <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>τ</mi></math></span><span></span> transforms to an expanding universe only for <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>κ</mi><mo>=</mo><mn>1</mn></math></span><span></span> in Lorentz time <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span> under analytic continuation <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>τ</mi><mo>=</mo><mi>i</mi><mi>t</mi></math></span><span></span> and asymptotically leads to an exponential solution. An Euclidean wormhole in the very early era evolves to an oscillating universe in <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>τ</mi></math></span><span></span>, thereafter crossing deSitter radius transition to an inflationary era is evident at later epoch only for <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>κ</mi><mo>=</mo><mn>1</mn></math></span><span></span>.</p>","PeriodicalId":50320,"journal":{"name":"International Journal of Geometric Methods in Modern Physics","volume":"47 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wormhole inducing exponential expansion in R2 gravity\",\"authors\":\"B Modak, Gargi Biswas\",\"doi\":\"10.1142/s0219887824502013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Wormholes are considered both from the Wheeler deWitt equation, as well as from the field equations in the Euclidean background of Robertson Walker mini-superspace in <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span> gravity. Quantum wormhole satisfies Hawking Page wormhole boundary condition in the Euclidean background of mini-superspace, however, in the Lorentzian background wave functional turns to the usual oscillatory function. The Euclidean field equations for <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>κ</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo stretchy=\\\"false\\\">±</mo><mn>1</mn></math></span><span></span> lead to the wormhole configuration, as well as oscillating universe in Euclidean time <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>τ</mi></math></span><span></span>. The oscillating universe in Euclidean time <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>τ</mi></math></span><span></span> transforms to an expanding universe only for <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>κ</mi><mo>=</mo><mn>1</mn></math></span><span></span> in Lorentz time <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>t</mi></math></span><span></span> under analytic continuation <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>τ</mi><mo>=</mo><mi>i</mi><mi>t</mi></math></span><span></span> and asymptotically leads to an exponential solution. An Euclidean wormhole in the very early era evolves to an oscillating universe in <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>τ</mi></math></span><span></span>, thereafter crossing deSitter radius transition to an inflationary era is evident at later epoch only for <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>κ</mi><mo>=</mo><mn>1</mn></math></span><span></span>.</p>\",\"PeriodicalId\":50320,\"journal\":{\"name\":\"International Journal of Geometric Methods in Modern Physics\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geometric Methods in Modern Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219887824502013\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geometric Methods in Modern Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0219887824502013","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

虫洞既可以从惠勒-德威特方程中考虑,也可以从罗伯逊-沃克迷你超空间的欧氏背景中的场方程中考虑。量子虫洞在迷你超空间的欧氏背景下满足霍金-佩奇虫洞边界条件,然而在洛伦兹背景下波函数变成了通常的振荡函数。κ=0,±1时的欧几里得场方程会导致虫洞构型,以及欧几里得时间τ中的振荡宇宙。在洛伦兹时间t中,欧几里得时间τ中的振荡宇宙只有在κ=1时才会在解析延续τ=it下转化为膨胀宇宙,并渐近地导致指数解。极早期的欧几里得虫洞在τ中演化为振荡宇宙,此后只有在κ=1的情况下,才会在较晚的纪元明显地越过德西特半径过渡到膨胀时代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wormhole inducing exponential expansion in R2 gravity

Wormholes are considered both from the Wheeler deWitt equation, as well as from the field equations in the Euclidean background of Robertson Walker mini-superspace in R2 gravity. Quantum wormhole satisfies Hawking Page wormhole boundary condition in the Euclidean background of mini-superspace, however, in the Lorentzian background wave functional turns to the usual oscillatory function. The Euclidean field equations for κ=0,±1 lead to the wormhole configuration, as well as oscillating universe in Euclidean time τ. The oscillating universe in Euclidean time τ transforms to an expanding universe only for κ=1 in Lorentz time t under analytic continuation τ=it and asymptotically leads to an exponential solution. An Euclidean wormhole in the very early era evolves to an oscillating universe in τ, thereafter crossing deSitter radius transition to an inflationary era is evident at later epoch only for κ=1.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
22.20%
发文量
274
审稿时长
6 months
期刊介绍: This journal publishes short communications, research and review articles devoted to all applications of geometric methods (including commutative and non-commutative Differential Geometry, Riemannian Geometry, Finsler Geometry, Complex Geometry, Lie Groups and Lie Algebras, Bundle Theory, Homology an Cohomology, Algebraic Geometry, Global Analysis, Category Theory, Operator Algebra and Topology) in all fields of Mathematical and Theoretical Physics, including in particular: Classical Mechanics (Lagrangian, Hamiltonian, Poisson formulations); Quantum Mechanics (also semi-classical approximations); Hamiltonian Systems of ODE''s and PDE''s and Integrability; Variational Structures of Physics and Conservation Laws; Thermodynamics of Systems and Continua (also Quantum Thermodynamics and Statistical Physics); General Relativity and other Geometric Theories of Gravitation; geometric models for Particle Physics; Supergravity and Supersymmetric Field Theories; Classical and Quantum Field Theory (also quantization over curved backgrounds); Gauge Theories; Topological Field Theories; Strings, Branes and Extended Objects Theory; Holography; Quantum Gravity, Loop Quantum Gravity and Quantum Cosmology; applications of Quantum Groups; Quantum Computation; Control Theory; Geometry of Chaos.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信