{"title":"单位矩阵的秩一乘法扰动动力学","authors":"Guillaume Dubach, Jana Reker","doi":"10.1142/s2010326324500072","DOIUrl":null,"url":null,"abstract":"<p>We provide a dynamical study of a model of multiplicative perturbation of a unitary matrix introduced by Fyodorov. In particular, we identify a flow of deterministic domains that bound the spectrum with high probability, separating the outlier from the typical eigenvalues at all sub-critical timescales. These results are obtained under generic assumptions on <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>U</mi></math></span><span></span> that hold for a variety of unitary random matrix models.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamics of a rank-one multiplicative perturbation of a unitary matrix\",\"authors\":\"Guillaume Dubach, Jana Reker\",\"doi\":\"10.1142/s2010326324500072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We provide a dynamical study of a model of multiplicative perturbation of a unitary matrix introduced by Fyodorov. In particular, we identify a flow of deterministic domains that bound the spectrum with high probability, separating the outlier from the typical eigenvalues at all sub-critical timescales. These results are obtained under generic assumptions on <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>U</mi></math></span><span></span> that hold for a variety of unitary random matrix models.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326324500072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326324500072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们对费奥多罗夫提出的单位矩阵乘法扰动模型进行了动力学研究。特别是,我们确定了一个确定性域流,它以高概率约束频谱,在所有次临界时间尺度上将离群值与典型特征值分离开来。这些结果是在 U 的一般假设下获得的,这些假设对各种单元随机矩阵模型都成立。
Dynamics of a rank-one multiplicative perturbation of a unitary matrix
We provide a dynamical study of a model of multiplicative perturbation of a unitary matrix introduced by Fyodorov. In particular, we identify a flow of deterministic domains that bound the spectrum with high probability, separating the outlier from the typical eigenvalues at all sub-critical timescales. These results are obtained under generic assumptions on that hold for a variety of unitary random matrix models.