扭曲诱导的双曲剪切元曲面

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Simon Yves, Emanuele Galiffi, Xiang Ni, Enrico M. Renzi, Andrea Alù
{"title":"扭曲诱导的双曲剪切元曲面","authors":"Simon Yves, Emanuele Galiffi, Xiang Ni, Enrico M. Renzi, Andrea Alù","doi":"10.1103/physrevx.14.021031","DOIUrl":null,"url":null,"abstract":"Following the discovery of moiré-driven superconductivity and density waves in twisted-graphene multilayers, twistronics has spurred a surge of interest in tailored broken symmetries through angular rotations enabling new properties, from electronics to photonics and phononics. Analogously, in monoclinic polar crystals a nontrivial angle between nondegenerate dipolar phonon resonances can naturally emerge due to asymmetries in their crystal lattice, and its variations are associated with intriguing polaritonic phenomena, including axial dispersion, i.e., the rotation of the optical axis with frequency, and microscopic shear effects that result in an asymmetric distribution of material loss. So far, these phenomena have been restricted to specific midinfrared frequencies difficult to access with conventional laser sources and fundamentally limited by the degree of asymmetry and by the strength of light-matter interactions available in natural crystals. Here, we leverage the twistronics concept to demonstrate maximal axial dispersion and loss redistribution of hyperbolic waves in elastic metasurfaces, achieved by tailoring the angle between coupled metasurface pairs featuring tailored anisotropy. We show extreme control over elastic wave dispersion and absorption via the twist angle and leverage the resulting phenomena to demonstrate enhanced propagation distance, in-plane reflection-free negative refraction and diffraction-free defect detection. Our work welds the concepts of twistronics, non-Hermiticity, and extreme anisotropy, demonstrating the powerful opportunities enabled by metasurfaces for tunable, highly directional surface-acoustic-wave propagation of great interest for a wide range of applications spanning from seismic mitigation to on-chip phononics and wireless communication systems, hence paving the way toward their translation into emerging photonic and polaritonic metasurface technologies.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"18 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twist-Induced Hyperbolic Shear Metasurfaces\",\"authors\":\"Simon Yves, Emanuele Galiffi, Xiang Ni, Enrico M. Renzi, Andrea Alù\",\"doi\":\"10.1103/physrevx.14.021031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Following the discovery of moiré-driven superconductivity and density waves in twisted-graphene multilayers, twistronics has spurred a surge of interest in tailored broken symmetries through angular rotations enabling new properties, from electronics to photonics and phononics. Analogously, in monoclinic polar crystals a nontrivial angle between nondegenerate dipolar phonon resonances can naturally emerge due to asymmetries in their crystal lattice, and its variations are associated with intriguing polaritonic phenomena, including axial dispersion, i.e., the rotation of the optical axis with frequency, and microscopic shear effects that result in an asymmetric distribution of material loss. So far, these phenomena have been restricted to specific midinfrared frequencies difficult to access with conventional laser sources and fundamentally limited by the degree of asymmetry and by the strength of light-matter interactions available in natural crystals. Here, we leverage the twistronics concept to demonstrate maximal axial dispersion and loss redistribution of hyperbolic waves in elastic metasurfaces, achieved by tailoring the angle between coupled metasurface pairs featuring tailored anisotropy. We show extreme control over elastic wave dispersion and absorption via the twist angle and leverage the resulting phenomena to demonstrate enhanced propagation distance, in-plane reflection-free negative refraction and diffraction-free defect detection. Our work welds the concepts of twistronics, non-Hermiticity, and extreme anisotropy, demonstrating the powerful opportunities enabled by metasurfaces for tunable, highly directional surface-acoustic-wave propagation of great interest for a wide range of applications spanning from seismic mitigation to on-chip phononics and wireless communication systems, hence paving the way toward their translation into emerging photonic and polaritonic metasurface technologies.\",\"PeriodicalId\":20161,\"journal\":{\"name\":\"Physical Review X\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":11.6000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review X\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.14.021031\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.021031","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

继在扭曲石墨烯多层板中发现摩尔纹驱动的超导性和密度波之后,扭曲电子学激起了人们对通过角度旋转实现新特性的定制破缺对称性的浓厚兴趣,包括电子学、光子学和声子学。与此类似,在单斜极性晶体中,由于其晶格的不对称,非孤立二极性声子共振之间会自然出现一个非小角度,其变化与引人入胜的极子现象有关,包括轴向色散(即光轴随频率旋转)和微观剪切效应(导致材料损耗的不对称分布)。迄今为止,这些现象仅限于特定的中红外频率,传统激光源很难进入,而且从根本上受到非对称程度和天然晶体中光-物质相互作用强度的限制。在这里,我们利用双曲概念展示了弹性元表面中双曲波的最大轴向色散和损耗再分布,这是通过调整具有定制各向异性的耦合元表面对之间的角度实现的。我们展示了通过扭转角度对弹性波色散和吸收的极端控制,并利用由此产生的现象展示了增强的传播距离、面内无反射负折射和无衍射缺陷检测。我们的工作融合了扭曲、非恒定性和极端各向异性的概念,展示了超表面为可调、高方向性表面声波传播带来的强大机遇,这些传播对于从地震缓解到片上声学和无线通信系统等广泛应用具有重大意义,从而为将其转化为新兴的光子和极子超表面技术铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Twist-Induced Hyperbolic Shear Metasurfaces

Twist-Induced Hyperbolic Shear Metasurfaces
Following the discovery of moiré-driven superconductivity and density waves in twisted-graphene multilayers, twistronics has spurred a surge of interest in tailored broken symmetries through angular rotations enabling new properties, from electronics to photonics and phononics. Analogously, in monoclinic polar crystals a nontrivial angle between nondegenerate dipolar phonon resonances can naturally emerge due to asymmetries in their crystal lattice, and its variations are associated with intriguing polaritonic phenomena, including axial dispersion, i.e., the rotation of the optical axis with frequency, and microscopic shear effects that result in an asymmetric distribution of material loss. So far, these phenomena have been restricted to specific midinfrared frequencies difficult to access with conventional laser sources and fundamentally limited by the degree of asymmetry and by the strength of light-matter interactions available in natural crystals. Here, we leverage the twistronics concept to demonstrate maximal axial dispersion and loss redistribution of hyperbolic waves in elastic metasurfaces, achieved by tailoring the angle between coupled metasurface pairs featuring tailored anisotropy. We show extreme control over elastic wave dispersion and absorption via the twist angle and leverage the resulting phenomena to demonstrate enhanced propagation distance, in-plane reflection-free negative refraction and diffraction-free defect detection. Our work welds the concepts of twistronics, non-Hermiticity, and extreme anisotropy, demonstrating the powerful opportunities enabled by metasurfaces for tunable, highly directional surface-acoustic-wave propagation of great interest for a wide range of applications spanning from seismic mitigation to on-chip phononics and wireless communication systems, hence paving the way toward their translation into emerging photonic and polaritonic metasurface technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信