具有 Lovász-Softmax 损失优化功能的复值 PolSAR 图像分割网络

Rui Guo;Xiaopeng Zhao;Liang Guo;Ruiqi Xu;Yi Liang
{"title":"具有 Lovász-Softmax 损失优化功能的复值 PolSAR 图像分割网络","authors":"Rui Guo;Xiaopeng Zhao;Liang Guo;Ruiqi Xu;Yi Liang","doi":"10.1109/JMASS.2024.3381974","DOIUrl":null,"url":null,"abstract":"In recent years, complex-valued convolutional neural networks (CNNs) have emerged as a promising approach for polarimetric synthetic aperture radar (PolSAR) image segmentation by utilizing both amplitude and phase information in PolSAR data. This article introduces a complex-valued network for PolSAR image segmentation termed as complex-valued Lovász-softmax loss optimization synthetic aperture radar network (CV-LoSARNet), which is in fact a complex-valued Lovász-softmax loss optimization framework. The bilateral structure of CV-LoSARNet provides efficient feature extraction, while the complex-valued network adapting to PolSAR data can improve feature extraction capabilities. The introduced loss function combines both the Lovász-softmax loss and cross-entropy loss, which can improve the optimization objective of the segmentation. Comparative experiments conducted on E-SAR data and AIRSAR data demonstrate the superiority of the proposed network over the classical full CNN and the classic bilateral networks. Compared with the classic bilateral network, the CV-LoSARNet has improved the mean intersection over union and mean pixel accuracy of E-SAR data sets by 2.37% and 2.29%, for AIRSAR data sets, the improvement is 12.95% and 6.70%. Moreover, the segmentation performance of the proposed network on different polarimetric modes is discussed.","PeriodicalId":100624,"journal":{"name":"IEEE Journal on Miniaturization for Air and Space Systems","volume":"5 2","pages":"100-107"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Complex-Valued PolSAR Image Segmentation Network With Lovász-Softmax Loss Optimization\",\"authors\":\"Rui Guo;Xiaopeng Zhao;Liang Guo;Ruiqi Xu;Yi Liang\",\"doi\":\"10.1109/JMASS.2024.3381974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, complex-valued convolutional neural networks (CNNs) have emerged as a promising approach for polarimetric synthetic aperture radar (PolSAR) image segmentation by utilizing both amplitude and phase information in PolSAR data. This article introduces a complex-valued network for PolSAR image segmentation termed as complex-valued Lovász-softmax loss optimization synthetic aperture radar network (CV-LoSARNet), which is in fact a complex-valued Lovász-softmax loss optimization framework. The bilateral structure of CV-LoSARNet provides efficient feature extraction, while the complex-valued network adapting to PolSAR data can improve feature extraction capabilities. The introduced loss function combines both the Lovász-softmax loss and cross-entropy loss, which can improve the optimization objective of the segmentation. Comparative experiments conducted on E-SAR data and AIRSAR data demonstrate the superiority of the proposed network over the classical full CNN and the classic bilateral networks. Compared with the classic bilateral network, the CV-LoSARNet has improved the mean intersection over union and mean pixel accuracy of E-SAR data sets by 2.37% and 2.29%, for AIRSAR data sets, the improvement is 12.95% and 6.70%. Moreover, the segmentation performance of the proposed network on different polarimetric modes is discussed.\",\"PeriodicalId\":100624,\"journal\":{\"name\":\"IEEE Journal on Miniaturization for Air and Space Systems\",\"volume\":\"5 2\",\"pages\":\"100-107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Miniaturization for Air and Space Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10479532/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Miniaturization for Air and Space Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10479532/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,复值卷积神经网络(CNN)通过利用 PolSAR 数据中的振幅和相位信息,成为极坐标合成孔径雷达(PolSAR)图像分割的一种有前途的方法。本文介绍了一种用于 PolSAR 图像分割的复值网络,称为复值 Lovász-softmax 损失优化合成孔径雷达网络(CV-LoSARNet),它实际上是一个复值 Lovász-softmax 损失优化框架。CV-LoSARNet 的双边结构可提供高效的特征提取,而适应 PolSAR 数据的复值网络则可提高特征提取能力。引入的损失函数结合了 Lovász-softmax 损失和交叉熵损失,可以改善分割的优化目标。在 E-SAR 数据和 AIRSAR 数据上进行的对比实验证明,所提出的网络优于经典的全 CNN 和经典的双边网络。与经典的双边网络相比,CV-LoSARNet 在 E-SAR 数据集的平均交集大于联合度和平均像素精度上分别提高了 2.37% 和 2.29%,在 AIRSAR 数据集上则分别提高了 12.95% 和 6.70%。此外,还讨论了拟议网络在不同极坐标模式下的分割性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Complex-Valued PolSAR Image Segmentation Network With Lovász-Softmax Loss Optimization
In recent years, complex-valued convolutional neural networks (CNNs) have emerged as a promising approach for polarimetric synthetic aperture radar (PolSAR) image segmentation by utilizing both amplitude and phase information in PolSAR data. This article introduces a complex-valued network for PolSAR image segmentation termed as complex-valued Lovász-softmax loss optimization synthetic aperture radar network (CV-LoSARNet), which is in fact a complex-valued Lovász-softmax loss optimization framework. The bilateral structure of CV-LoSARNet provides efficient feature extraction, while the complex-valued network adapting to PolSAR data can improve feature extraction capabilities. The introduced loss function combines both the Lovász-softmax loss and cross-entropy loss, which can improve the optimization objective of the segmentation. Comparative experiments conducted on E-SAR data and AIRSAR data demonstrate the superiority of the proposed network over the classical full CNN and the classic bilateral networks. Compared with the classic bilateral network, the CV-LoSARNet has improved the mean intersection over union and mean pixel accuracy of E-SAR data sets by 2.37% and 2.29%, for AIRSAR data sets, the improvement is 12.95% and 6.70%. Moreover, the segmentation performance of the proposed network on different polarimetric modes is discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信