对称群虚扩展的换元子群和晶商

Pub Date : 2024-05-17 DOI:10.1016/j.jpaa.2024.107713
Pravin Kumar , Tushar Kanta Naik , Neha Nanda , Mahender Singh
{"title":"对称群虚扩展的换元子群和晶商","authors":"Pravin Kumar ,&nbsp;Tushar Kanta Naik ,&nbsp;Neha Nanda ,&nbsp;Mahender Singh","doi":"10.1016/j.jpaa.2024.107713","DOIUrl":null,"url":null,"abstract":"<div><p>The virtual braid group <span><math><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the virtual twin group <span><math><mi>V</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and the virtual triplet group <span><math><mi>V</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are extensions of the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, which are motivated by the Alexander-Markov correspondence for virtual knot theories. The kernels of natural epimorphisms of these groups onto the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are the pure virtual braid group <span><math><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the pure virtual twin group <span><math><mi>P</mi><mi>V</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and the pure virtual triplet group <span><math><mi>P</mi><mi>V</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, respectively. In this paper, we investigate commutator subgroups, pure subgroups and crystallographic quotients of these groups. We derive explicit finite presentations of the pure virtual triplet group <span><math><mi>P</mi><mi>V</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the commutator subgroup <span><math><mi>V</mi><msubsup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> of <span><math><mi>V</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and the commutator subgroup <span><math><mi>V</mi><msubsup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> of <span><math><mi>V</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Our results complete the understanding of these groups, except that of <span><math><mi>V</mi><msubsup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>′</mo></mrow></msubsup></math></span>, for which the existence of a finite presentation is not known for <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>. We also prove that <span><math><mi>V</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>/</mo><mi>P</mi><mi>V</mi><msubsup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> is a crystallographic group and give an explicit construction of infinitely many torsion elements in it.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commutator subgroups and crystallographic quotients of virtual extensions of symmetric groups\",\"authors\":\"Pravin Kumar ,&nbsp;Tushar Kanta Naik ,&nbsp;Neha Nanda ,&nbsp;Mahender Singh\",\"doi\":\"10.1016/j.jpaa.2024.107713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The virtual braid group <span><math><mi>V</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the virtual twin group <span><math><mi>V</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and the virtual triplet group <span><math><mi>V</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are extensions of the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, which are motivated by the Alexander-Markov correspondence for virtual knot theories. The kernels of natural epimorphisms of these groups onto the symmetric group <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> are the pure virtual braid group <span><math><mi>V</mi><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the pure virtual twin group <span><math><mi>P</mi><mi>V</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and the pure virtual triplet group <span><math><mi>P</mi><mi>V</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, respectively. In this paper, we investigate commutator subgroups, pure subgroups and crystallographic quotients of these groups. We derive explicit finite presentations of the pure virtual triplet group <span><math><mi>P</mi><mi>V</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, the commutator subgroup <span><math><mi>V</mi><msubsup><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> of <span><math><mi>V</mi><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and the commutator subgroup <span><math><mi>V</mi><msubsup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> of <span><math><mi>V</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Our results complete the understanding of these groups, except that of <span><math><mi>V</mi><msubsup><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>′</mo></mrow></msubsup></math></span>, for which the existence of a finite presentation is not known for <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>. We also prove that <span><math><mi>V</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>/</mo><mi>P</mi><mi>V</mi><msubsup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>′</mo></mrow></msubsup></math></span> is a crystallographic group and give an explicit construction of infinitely many torsion elements in it.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虚辫群 VBn、虚孪群 VTn 和虚三重群 VLn 是对称群 Sn 的扩展,它们是由虚结理论的亚历山大-马尔科夫对应关系激发的。这些群到对称群 Sn 的自然外变形的内核分别是纯虚辫群 VPn、纯虚孪生群 PVTn 和纯虚三重群 PVLn。本文研究了这些群的换元子群、纯子群和结晶商。我们推导了纯虚三重群 PVLn、VTn 的换元子群 VTn′ 和 VLn 的换元子群 VLn′ 的显式有限呈现。我们的结果完成了对这些群的理解,但 VBn′ 除外,因为对于 n≥4 的 VBn′,有限呈现的存在尚不可知。我们还证明了 VLn/PVLn′ 是一个结晶群,并给出了其中无限多个扭元的明确构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Commutator subgroups and crystallographic quotients of virtual extensions of symmetric groups

The virtual braid group VBn, the virtual twin group VTn and the virtual triplet group VLn are extensions of the symmetric group Sn, which are motivated by the Alexander-Markov correspondence for virtual knot theories. The kernels of natural epimorphisms of these groups onto the symmetric group Sn are the pure virtual braid group VPn, the pure virtual twin group PVTn and the pure virtual triplet group PVLn, respectively. In this paper, we investigate commutator subgroups, pure subgroups and crystallographic quotients of these groups. We derive explicit finite presentations of the pure virtual triplet group PVLn, the commutator subgroup VTn of VTn and the commutator subgroup VLn of VLn. Our results complete the understanding of these groups, except that of VBn, for which the existence of a finite presentation is not known for n4. We also prove that VLn/PVLn is a crystallographic group and give an explicit construction of infinitely many torsion elements in it.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信