Riccardo Voccio , Cristina Malegori , Paolo Oliveri , Federica Branduani , Marco Arimondi , Andrea Bernardi , Giorgio Luciano , Mattia Cettolin
{"title":"在近红外数据上结合 PLS-DA 和 SIMCA 对轮胎工业原料进行分类:分层分类模型","authors":"Riccardo Voccio , Cristina Malegori , Paolo Oliveri , Federica Branduani , Marco Arimondi , Andrea Bernardi , Giorgio Luciano , Mattia Cettolin","doi":"10.1016/j.chemolab.2024.105150","DOIUrl":null,"url":null,"abstract":"<div><p>Tyre materials are complex products, as they are prepared using a number of raw materials, each of them with its specific chemical composition and functionality in the final product. It is, therefore, of crucial importance to avoid mislabeling errors and even to verify the compliance of raw materials entering the factory.</p><p>The present study proposes a strategy that makes use of near infrared (NIR) spectroscopy combined with chemometrics for raw material identification (RMID) and compliance verification of the most common raw materials used in the tyre industry. In particular, the chemometric model developed consists of a global hierarchical classification model, which combines nested PLS-DA nodes for RMID and SIMCA nodes for compliance verification, in a two-step approach.</p><p>The global model showed satisfactory results, as a 100 % of total correct predictions and a sensitivity higher than 90 % in the test set were obtained for most of the classes of interest.</p><p>The strategy obtained has the final goal of being directly applied on the raw materials at their receiving stage in factory, with the double advantage of minimizing the risk of mislabeling and, at the same time, decreasing the number of suspicious samples that need to be analyzed in the laboratory, by means of traditional methods, for verifying their compliance.</p></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"250 ","pages":"Article 105150"},"PeriodicalIF":3.7000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S016974392400090X/pdfft?md5=c98998e0122d4f4f2c21e7b0a46c05e0&pid=1-s2.0-S016974392400090X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Combining PLS-DA and SIMCA on NIR data for classifying raw materials for tyre industry: A hierarchical classification model\",\"authors\":\"Riccardo Voccio , Cristina Malegori , Paolo Oliveri , Federica Branduani , Marco Arimondi , Andrea Bernardi , Giorgio Luciano , Mattia Cettolin\",\"doi\":\"10.1016/j.chemolab.2024.105150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Tyre materials are complex products, as they are prepared using a number of raw materials, each of them with its specific chemical composition and functionality in the final product. It is, therefore, of crucial importance to avoid mislabeling errors and even to verify the compliance of raw materials entering the factory.</p><p>The present study proposes a strategy that makes use of near infrared (NIR) spectroscopy combined with chemometrics for raw material identification (RMID) and compliance verification of the most common raw materials used in the tyre industry. In particular, the chemometric model developed consists of a global hierarchical classification model, which combines nested PLS-DA nodes for RMID and SIMCA nodes for compliance verification, in a two-step approach.</p><p>The global model showed satisfactory results, as a 100 % of total correct predictions and a sensitivity higher than 90 % in the test set were obtained for most of the classes of interest.</p><p>The strategy obtained has the final goal of being directly applied on the raw materials at their receiving stage in factory, with the double advantage of minimizing the risk of mislabeling and, at the same time, decreasing the number of suspicious samples that need to be analyzed in the laboratory, by means of traditional methods, for verifying their compliance.</p></div>\",\"PeriodicalId\":9774,\"journal\":{\"name\":\"Chemometrics and Intelligent Laboratory Systems\",\"volume\":\"250 \",\"pages\":\"Article 105150\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S016974392400090X/pdfft?md5=c98998e0122d4f4f2c21e7b0a46c05e0&pid=1-s2.0-S016974392400090X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemometrics and Intelligent Laboratory Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016974392400090X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016974392400090X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Combining PLS-DA and SIMCA on NIR data for classifying raw materials for tyre industry: A hierarchical classification model
Tyre materials are complex products, as they are prepared using a number of raw materials, each of them with its specific chemical composition and functionality in the final product. It is, therefore, of crucial importance to avoid mislabeling errors and even to verify the compliance of raw materials entering the factory.
The present study proposes a strategy that makes use of near infrared (NIR) spectroscopy combined with chemometrics for raw material identification (RMID) and compliance verification of the most common raw materials used in the tyre industry. In particular, the chemometric model developed consists of a global hierarchical classification model, which combines nested PLS-DA nodes for RMID and SIMCA nodes for compliance verification, in a two-step approach.
The global model showed satisfactory results, as a 100 % of total correct predictions and a sensitivity higher than 90 % in the test set were obtained for most of the classes of interest.
The strategy obtained has the final goal of being directly applied on the raw materials at their receiving stage in factory, with the double advantage of minimizing the risk of mislabeling and, at the same time, decreasing the number of suspicious samples that need to be analyzed in the laboratory, by means of traditional methods, for verifying their compliance.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.