Christian Bargetz, Adam Bartoš, Wiesław Kubiś, Franz Luggin
{"title":"同质无等腰空间","authors":"Christian Bargetz, Adam Bartoš, Wiesław Kubiś, Franz Luggin","doi":"10.1007/s13398-024-01587-y","DOIUrl":null,"url":null,"abstract":"<p><p>We study homogeneity aspects of metric spaces in which all triples of distinct points admit pairwise different distances; such spaces are called <i>isosceles-free</i>. In particular, we characterize all homogeneous isosceles-free spaces up to isometry as vector spaces over the two-element field, endowed with an injective norm. Using isosceles-free decompositions, we provide bounds on the maximal number of distances in arbitrary homogeneous finite metric spaces.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11108961/pdf/","citationCount":"0","resultStr":"{\"title\":\"Homogeneous isosceles-free spaces.\",\"authors\":\"Christian Bargetz, Adam Bartoš, Wiesław Kubiś, Franz Luggin\",\"doi\":\"10.1007/s13398-024-01587-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study homogeneity aspects of metric spaces in which all triples of distinct points admit pairwise different distances; such spaces are called <i>isosceles-free</i>. In particular, we characterize all homogeneous isosceles-free spaces up to isometry as vector spaces over the two-element field, endowed with an injective norm. Using isosceles-free decompositions, we provide bounds on the maximal number of distances in arbitrary homogeneous finite metric spaces.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11108961/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13398-024-01587-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13398-024-01587-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
We study homogeneity aspects of metric spaces in which all triples of distinct points admit pairwise different distances; such spaces are called isosceles-free. In particular, we characterize all homogeneous isosceles-free spaces up to isometry as vector spaces over the two-element field, endowed with an injective norm. Using isosceles-free decompositions, we provide bounds on the maximal number of distances in arbitrary homogeneous finite metric spaces.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.