{"title":"胃肠道腔内压力波的起源。","authors":"Swati Sharma, Martin L Buist","doi":"10.1007/s11517-024-03128-6","DOIUrl":null,"url":null,"abstract":"<p><p>The gastrointestinal (GI) peristalsis is an involuntary wave-like contraction of the GI wall that helps to propagate food along the tract. Many GI diseases, e.g., gastroparesis, are known to cause motility disorders in which the physiological contractile patterns of the wall get disrupted. Therefore, to understand the pathophysiology of these diseases, it is necessary to understand the mechanism of GI motility. We present a coupled electromechanical model to describe the mechanism of GI motility and the transduction pathway of cellular electrical activities into mechanical deformation and the generation of intraluminal pressure (IP) waves in the GI tract. The proposed model consolidates a smooth muscle cell (SMC) model, an actin-myosin interaction model, a hyperelastic constitutive model, and a Windkessel model to construct a coupled model that can describe the origin of peristaltic contractions in the intestine. The key input to the model is external electrical stimuli, which are converted into mechanical contractile waves in the wall. The model recreated experimental observations efficiently and was able to establish a relationship between change in luminal volume and pressure with the compliance of the GI wall and the peripheral resistance to bolus flow. The proposed model will help us understand the GI tract's function in physiological and pathophysiological conditions.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The origin of intraluminal pressure waves in gastrointestinal tract.\",\"authors\":\"Swati Sharma, Martin L Buist\",\"doi\":\"10.1007/s11517-024-03128-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The gastrointestinal (GI) peristalsis is an involuntary wave-like contraction of the GI wall that helps to propagate food along the tract. Many GI diseases, e.g., gastroparesis, are known to cause motility disorders in which the physiological contractile patterns of the wall get disrupted. Therefore, to understand the pathophysiology of these diseases, it is necessary to understand the mechanism of GI motility. We present a coupled electromechanical model to describe the mechanism of GI motility and the transduction pathway of cellular electrical activities into mechanical deformation and the generation of intraluminal pressure (IP) waves in the GI tract. The proposed model consolidates a smooth muscle cell (SMC) model, an actin-myosin interaction model, a hyperelastic constitutive model, and a Windkessel model to construct a coupled model that can describe the origin of peristaltic contractions in the intestine. The key input to the model is external electrical stimuli, which are converted into mechanical contractile waves in the wall. The model recreated experimental observations efficiently and was able to establish a relationship between change in luminal volume and pressure with the compliance of the GI wall and the peripheral resistance to bolus flow. The proposed model will help us understand the GI tract's function in physiological and pathophysiological conditions.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03128-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03128-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
The origin of intraluminal pressure waves in gastrointestinal tract.
The gastrointestinal (GI) peristalsis is an involuntary wave-like contraction of the GI wall that helps to propagate food along the tract. Many GI diseases, e.g., gastroparesis, are known to cause motility disorders in which the physiological contractile patterns of the wall get disrupted. Therefore, to understand the pathophysiology of these diseases, it is necessary to understand the mechanism of GI motility. We present a coupled electromechanical model to describe the mechanism of GI motility and the transduction pathway of cellular electrical activities into mechanical deformation and the generation of intraluminal pressure (IP) waves in the GI tract. The proposed model consolidates a smooth muscle cell (SMC) model, an actin-myosin interaction model, a hyperelastic constitutive model, and a Windkessel model to construct a coupled model that can describe the origin of peristaltic contractions in the intestine. The key input to the model is external electrical stimuli, which are converted into mechanical contractile waves in the wall. The model recreated experimental observations efficiently and was able to establish a relationship between change in luminal volume and pressure with the compliance of the GI wall and the peripheral resistance to bolus flow. The proposed model will help us understand the GI tract's function in physiological and pathophysiological conditions.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).