{"title":"不同脑图像增强技术的对比分析","authors":"Shilpa Bajaj, Manju Bala, Mohit Angurala","doi":"10.1007/s11517-024-03127-7","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning (DL) requires a large amount of training data to improve performance and prevent overfitting. To overcome these difficulties, we need to increase the size of the training dataset. This can be done by augmentation on a small dataset. The augmentation approaches must enhance the model's performance during the learning period. There are several types of transformations that can be applied to medical images. These transformations can be applied to the entire dataset or to a subset of the data, depending on the desired outcome. In this study, we categorize data augmentation methods into four groups: Absent augmentation, where no modifications are made; basic augmentation, which includes brightness and contrast adjustments; intermediate augmentation, encompassing a wider array of transformations like rotation, flipping, and shifting in addition to brightness and contrast adjustments; and advanced augmentation, where all transformation layers are employed. We plan to conduct a comprehensive analysis to determine which group performs best when applied to brain CT images. This evaluation aims to identify the augmentation group that produces the most favorable results in terms of improving model accuracy, minimizing diagnostic errors, and ensuring the robustness of the model in the context of brain CT image analysis.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative analysis of different augmentations for brain images.\",\"authors\":\"Shilpa Bajaj, Manju Bala, Mohit Angurala\",\"doi\":\"10.1007/s11517-024-03127-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deep learning (DL) requires a large amount of training data to improve performance and prevent overfitting. To overcome these difficulties, we need to increase the size of the training dataset. This can be done by augmentation on a small dataset. The augmentation approaches must enhance the model's performance during the learning period. There are several types of transformations that can be applied to medical images. These transformations can be applied to the entire dataset or to a subset of the data, depending on the desired outcome. In this study, we categorize data augmentation methods into four groups: Absent augmentation, where no modifications are made; basic augmentation, which includes brightness and contrast adjustments; intermediate augmentation, encompassing a wider array of transformations like rotation, flipping, and shifting in addition to brightness and contrast adjustments; and advanced augmentation, where all transformation layers are employed. We plan to conduct a comprehensive analysis to determine which group performs best when applied to brain CT images. This evaluation aims to identify the augmentation group that produces the most favorable results in terms of improving model accuracy, minimizing diagnostic errors, and ensuring the robustness of the model in the context of brain CT image analysis.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03127-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03127-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A comparative analysis of different augmentations for brain images.
Deep learning (DL) requires a large amount of training data to improve performance and prevent overfitting. To overcome these difficulties, we need to increase the size of the training dataset. This can be done by augmentation on a small dataset. The augmentation approaches must enhance the model's performance during the learning period. There are several types of transformations that can be applied to medical images. These transformations can be applied to the entire dataset or to a subset of the data, depending on the desired outcome. In this study, we categorize data augmentation methods into four groups: Absent augmentation, where no modifications are made; basic augmentation, which includes brightness and contrast adjustments; intermediate augmentation, encompassing a wider array of transformations like rotation, flipping, and shifting in addition to brightness and contrast adjustments; and advanced augmentation, where all transformation layers are employed. We plan to conduct a comprehensive analysis to determine which group performs best when applied to brain CT images. This evaluation aims to identify the augmentation group that produces the most favorable results in terms of improving model accuracy, minimizing diagnostic errors, and ensuring the robustness of the model in the context of brain CT image analysis.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).