Carissa Bleker, Stephen K Grady, Michael A Langston
{"title":"基因共表达阈值算法比较研究","authors":"Carissa Bleker, Stephen K Grady, Michael A Langston","doi":"10.1089/cmb.2024.0509","DOIUrl":null,"url":null,"abstract":"<p><p>The thresholding problem is studied in the context of graph theoretical analysis of gene co-expression data. A number of thresholding methodologies are described, implemented, and tested over a large collection of graphs derived from real high-throughput biological data. Comparative results are presented and discussed.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"539-548"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparative Study of Gene Co-Expression Thresholding Algorithms.\",\"authors\":\"Carissa Bleker, Stephen K Grady, Michael A Langston\",\"doi\":\"10.1089/cmb.2024.0509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The thresholding problem is studied in the context of graph theoretical analysis of gene co-expression data. A number of thresholding methodologies are described, implemented, and tested over a large collection of graphs derived from real high-throughput biological data. Comparative results are presented and discussed.</p>\",\"PeriodicalId\":15526,\"journal\":{\"name\":\"Journal of Computational Biology\",\"volume\":\" \",\"pages\":\"539-548\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/cmb.2024.0509\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2024.0509","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A Comparative Study of Gene Co-Expression Thresholding Algorithms.
The thresholding problem is studied in the context of graph theoretical analysis of gene co-expression data. A number of thresholding methodologies are described, implemented, and tested over a large collection of graphs derived from real high-throughput biological data. Comparative results are presented and discussed.
期刊介绍:
Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics.
Journal of Computational Biology coverage includes:
-Genomics
-Mathematical modeling and simulation
-Distributed and parallel biological computing
-Designing biological databases
-Pattern matching and pattern detection
-Linking disparate databases and data
-New tools for computational biology
-Relational and object-oriented database technology for bioinformatics
-Biological expert system design and use
-Reasoning by analogy, hypothesis formation, and testing by machine
-Management of biological databases